如圖,已知二次函數(shù)y=ax2+bx+c的圖象的頂點為M(2,1),且過點N(3,2).

(1)求這個二次函數(shù)的關(guān)系式;
(2)若一次函數(shù)y=-x-4的圖象與x軸交于點A,與y軸交于點B,P為拋物線上的一個動點,過點P作PQ∥y軸交直線AB于點Q,以PQ為直徑作圓交直線AB于點D.設(shè)點P的橫坐標為n,問:當n為何值時,線段DQ的長取得最小值?最小值為多少?

(1)這個二次函數(shù)的關(guān)系式為y=(x-2)2+1;(2)當n=時,DQ取得最小值,為

解析試題分析:(1)由于頂點為M(2,1),故設(shè)這個二次函數(shù)的關(guān)系式為y=a(x-2)2+1,又因為過點N(3,2),代入解析式即可求出a的值,從而得到解析式;
(2)用含有n 得代數(shù)式表示出P,Q坐標,求出PQ最小值,再證得△DPQ∽△OAB,根據(jù)相似三角形性質(zhì)即可求得DQ的最小值.
試題解析:(1)設(shè)這個二次函數(shù)的關(guān)系式為y=a(x-2)2+1.
把x=3,y=2代入得a+1=2,∴a=1.
∴這個二次函數(shù)的關(guān)系式為y=(x-2)2+1.
(2)由題意知P(n,n2-4n+5),Q(n,-n-4).
∴PQ=n2-4n+5-(-n-4)=n2n+9=(n-)2. 
∴當n=時,PQ取得最小值,為
易證△DPQ∽△OAB,
,
∵一次函數(shù)y=-x-4的圖象與x軸交于點A,與y軸交于點B,
∴OB=4,OA=3,AB==5
∴DQ=PQ=
∴當n=時,DQ取得最小值,為
考點:二次函數(shù)與一次函數(shù)綜合.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中,二次函數(shù)的圖象與x軸交于A、B兩點, A點在原點的左側(cè),B點的坐標為(,),與y軸交于C(,)點,點P是直線BC下方的拋物線上一動點.

(1)求這個二次函數(shù)的表達式.
(2)連結(jié)PO、PC,并把△POC沿CO翻折,得到四邊形POP’C,那么是否存在點P,使四邊形POP’C為菱形?若存在,請求出此時點P的坐標;若不存在,請說明理由.
(3)當點P運動到什么位置時,四邊形 ABPC的面積最大并求出此時P點的坐標和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,拋物線過點,且與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C.點D的坐標為,連接CA,CB,CD.

(1)求證:
(2)是第一象限內(nèi)拋物線上的一個動點,連接DP交BC于點E.
①當△BDE是等腰三角形時,直接寫出點E的坐標;
②連接CP,當△CDP的面積最大時,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知,二次函數(shù)的圖像經(jīng)過點和點B,其中點B在第一象限,且OA=OB,cot∠BAO=2.

(1)求點B的坐標;
(2)求二次函數(shù)的解析式;
(3)過點B作直線BC平行于x軸,直線BC與二次函數(shù)圖像的另一個交點為C,聯(lián)結(jié)AC,如果點P在x軸上,且△ABC和△PAB相似,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知二次函數(shù)y=x2–kx+k–1(k>2).

(1)求證:拋物線y=x2–kx+k-1(k>2)與x軸必有兩個交點;
(2)拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,若,求拋物線的表達式;
(3)以(2)中的拋物線上一點P(m,n)為圓心,1為半徑作圓,直接寫出:當m取何值時,x軸與相離、相切、相交.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:紅星建材店為某工廠代銷一種建筑材料(這里的代銷是指廠家先免費提供貨源,待貨物售出后再進行結(jié)算,未售出的由廠家負責處理).當每噸售價為260元時,月銷售量為45噸.該建材店為提高經(jīng)營利潤,準備采取降價的方式進行促銷.經(jīng)市場調(diào)查發(fā)現(xiàn):當每噸售價每下降10元時,月銷售量就會增加7. 5噸.綜合考慮各種因素,每售出一噸建筑材料共需支付廠家及其它費用100元.設(shè)每噸材料售價為x(元),該經(jīng)銷店的月利潤為y(元).
(1)當每噸售價是240元時,計算此時的月銷售量;
(2)求出y與x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(3)該建材店要獲得最大月利潤,售價應(yīng)定為每噸多少元?
(4)小靜說:“當月利潤最大時,月銷售額也最大.”你認為對嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,二次函數(shù)的圖象與x軸交于點A(-3,0)和點B,以AB為邊在x軸上方作正方形ABCD,點P是x軸上一動點,連接DP,過點P作DP的垂線與y軸交于點E.

(1)請直接寫出點D的坐標:
(2)當點P在線段AO(點P不與A、O重合)上運動至何處時,線段OE的長有最大值,求出這個最大值;
(3)是否存在這樣的點P,使△PED是等腰三角形?若存在,請求出點P的坐標及此時△PED與正方形ABCD重疊部分的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

小明利用暑假20天(8月5日至24日)參與了一家網(wǎng)店經(jīng)營的社會實踐.負責在網(wǎng)絡(luò)上銷售一種新款的SD卡,每張成本價為20元.第天銷售的相關(guān)信息如下表所示.

銷售量p(張)

銷售單價q(元/張)

 
(1)請計算哪一天SD卡的銷售單價為35元?
(2)在這20天中,在網(wǎng)絡(luò)上這款銷售SD卡在哪一天獲得利潤最大?這一天賺了多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知二次函數(shù)

(1)證明:不論取何值,該函數(shù)圖象與軸總有兩個公共點;
(2)若該函數(shù)的圖象與軸交于點(0,5),求出頂點坐標,并畫出該函數(shù)圖象.

查看答案和解析>>

同步練習冊答案