【題目】如圖,AB是⊙O的直徑,弧ED=弧BD,連接ED、BD,延長(zhǎng)AE交BD的延長(zhǎng)線于點(diǎn)M,過點(diǎn)D作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)C.
(1)若OACD,求陰影部分的面積;
(2)求證:DEDM.
【答案】(1)4-π;(2)參見解析.
【解析】
試題(1)連接OD,由已知條件可證出三角形ODC是等腰直角三角形,OD的長(zhǎng)度知道,∠DOB的度數(shù)是45度,這樣,陰影的面積就等于等腰直角三角形ODC的面積減去扇形ODB的面積.(2)連接AD,由已知條件可證出AD垂直平分BM,從而得到DM=DB,又因?yàn)榛?/span>DE=弧DB,DE=DB,所以DE就等于DM了.
試題解析:(1)連接OD,∵CD是⊙O切線,∴OD⊥CD∵OA="CD" =, OA=OD∴OD=CD=∴△OCD 為等腰直角三角形∠DOC=∠C=45°S陰影=S△OCD-S扇OBD=××-.(2)連接AD.∵AB是⊙O直徑∴∠ADB=∠ADM= 90°又∵弧ED=弧BD∴ED="BD" ∠MAD=∠BAD∴△AMD≌△ABD∴DM="BD" ∴DE=DM.如圖所示:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一種可折疊臺(tái)燈,它放置在水平桌面上,將其抽象成圖2,其中點(diǎn)B,E,D均為可轉(zhuǎn)動(dòng)點(diǎn).現(xiàn)測(cè)得AB=BE=ED=CD=15cm,經(jīng)多次調(diào)試發(fā)現(xiàn)當(dāng)點(diǎn)B,E所在直線垂直經(jīng)過CD的中點(diǎn)F時(shí)(如圖3所示)放置較平穩(wěn).
(1)求平穩(wěn)放置時(shí)燈座DC與燈桿DE的夾角的大。
(2)為保護(hù)視力,寫字時(shí)眼睛離桌面的距離應(yīng)保持在30cm,為防止臺(tái)燈刺眼,點(diǎn)A離桌面的距離應(yīng)不超過30cm,求臺(tái)燈平穩(wěn)放置時(shí)∠ABE的最大值.(結(jié)果精確到0.01°,參考數(shù)據(jù): ≈1.732,sin7.70°≈0.134,cos82.30°≈0.134,可使用科學(xué)計(jì)算器)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,D為⊙O上一點(diǎn),OD⊥AC,垂足為E,連接BD.
(1)求證:BD平分∠ABC;
(2) 當(dāng)∠ODB=30°時(shí),求證:BC=OD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋一枚均勻硬幣正面朝上的概率為,下列說法錯(cuò)誤的是
A. 連續(xù)拋一枚均勻硬幣2次必有1次正面朝上
B. 連續(xù)拋一枚均勻硬幣10次都可能正面朝上
C. 大量反復(fù)拋一枚均勻硬幣,平均每100次出現(xiàn)正面朝上50次
D. 通過拋一枚均勻硬幣確定誰先發(fā)球的比賽規(guī)則是公平的
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的半徑為5,PA是⊙O的一條切線,切點(diǎn)為A,連接PO并延長(zhǎng),交⊙O于點(diǎn)B,過點(diǎn)A作AC⊥PB交⊙O于點(diǎn)C、交PB于點(diǎn)D,連接BC,當(dāng)∠P=30°時(shí),
(1)求弦AC的長(zhǎng);
(2)求證:BC∥PA.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子里,裝有三個(gè)分別寫有數(shù)字6,-2,7的小球,它們的形狀、大小、質(zhì)地等完全相同,先從盒子里隨機(jī)取出一個(gè)小球,記下數(shù)字后放回盒子,搖勻后再隨機(jī)取出一個(gè)小球,記下數(shù)字.請(qǐng)你用畫樹狀圖的方法,求下列事件的概率:
(1)兩次取出小球上的數(shù)字相同;
(2)兩次取出小球上的數(shù)字之和大于10.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀探索:“任意給定一個(gè)矩形A,是否存在另一個(gè)矩形B,它的周長(zhǎng)和面積分別是已知矩形周長(zhǎng)和面積的一半?”(完成下列空格)
(1)當(dāng)已知矩形A的邊長(zhǎng)分別為6和1時(shí),小亮同學(xué)是這樣研究的:
設(shè)所求矩形的兩邊分別是x和y,由題意得方程組:,消去y化簡(jiǎn)得:2x2﹣7x+6=0,
∵△=49﹣48>0,
∴x1=_____,x2=_______,
∴滿足要求的矩形B存在.
(2)如果已知矩形A的邊長(zhǎng)分別為2和1,請(qǐng)你仿照小亮的方法研究是否存在滿足要求的矩形B.
(3)如果矩形A的邊長(zhǎng)為m和n,請(qǐng)你研究滿足什么條件時(shí),矩形B存在?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),拋物線與軸相交于點(diǎn).與軸交于點(diǎn),點(diǎn),在直線上.
(1)當(dāng)隨著的增大而增大時(shí),求自變量的取值范圍;
(2)將拋物線向左平移個(gè)單位,記平移后隨著的增大而增大的部分為,直線向下平移個(gè)單位,當(dāng)平移后的直線與有公共點(diǎn)時(shí),求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)綜合實(shí)踐活動(dòng)中,小明計(jì)劃測(cè)量城門大樓的高度,在點(diǎn)B處測(cè)得樓頂A的仰角為22°,他正對(duì)著城樓前進(jìn)21米到達(dá)C處,再登上3米高的樓臺(tái)D處,并測(cè)得此時(shí)樓頂A的仰角為45°.
(1)求城門大樓的高度;
(2)每逢重大節(jié)日,城門大樓管理處都要在A,B之間拉上繩子,并在繩子上掛一些彩旗,請(qǐng)你求出A,B之間所掛彩旗的長(zhǎng)度(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com