【題目】如圖,Rt△ABC中,∠ACB=90°,AC=6cmBC=8cm.動點M從點B出發(fā),在BA邊上以每秒3cm的速度向定點A運(yùn)動,同時動點N從點C出發(fā),在CB邊上以每秒2cm的速度向點B運(yùn)動,且MGBC,運(yùn)動時間為t秒(0<t),連接MN

(1)用含t的式子表示MG

(2)當(dāng)t為何值時,四邊形ACNM的面積最。坎⑶蟪鲎钚∶娣e;

(3)若△BMN與△ABC相似,求t的值.

【答案】(1)MGt(2)t=2秒時,S四邊形ACNM最小cm2(3)BMN與△ABC相似,t的值為秒或秒.

【解析】

(1)先利用勾股定理求出AB=10,再判斷出BGM∽△BCA,得出比例式即可得出結(jié)論;

(2)先表示出MN,最后利用三角形的面積差即可建立函數(shù)關(guān)系式,即可得出結(jié)論;

(3)先表示出BMBN,再分兩種情況,利用相似三角形得出比例式建立方程求解即可得出結(jié)論.

解:(1)由運(yùn)動知,BM=3t

RtABC中,AC=6,BC=8,

AB=10,

MGBC,

∴∠MGB=90°=ACB,

∵∠BB,

∴△BGM∽△BCA,

,

MGt;

(2)由運(yùn)動知,CN=2t

BNBCCN=8﹣2t,

由(1)知,MGt

S四邊形ACNMSABCSBNMBC×ACBN×MG=×8×6﹣(8﹣2t)×tt﹣2)2+,

0<t,

t=2秒時,S四邊形ACNM最小cm2;

(3)由(1)(2)知,BM=3t,BN=8﹣2t

∵△BMNABC相似,

∴①當(dāng)BMNBAC時,,

,

t秒,

②當(dāng)BMN∽△BCA時,,

,

t秒,

即:BMNABC相似,t的值為秒或秒.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點,點Ax軸的正半軸上,點Cy軸的正半軸上,OA=5,OC=4.

(1)如圖①,在AB上取一點D,將紙片沿OD翻折,使點A落在BC邊上的點E處,求D、E兩點的坐標(biāo);

(2)如圖②,若OE上有一動點P(不與O,E重合),從點O出發(fā),以每秒1個單位的速度沿OE方向向點E勻速運(yùn)動,設(shè)運(yùn)動時間為t秒(0<t<5),過點PPMOEOD于點M,連接ME,求當(dāng)t為何值時,以點P、M、E為頂點的三角形與△ODA相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明為了檢測自己實心球的訓(xùn)練情況,再一次投擲的測試中,實心球經(jīng)過的拋物線如圖所示,其中出手點A的坐標(biāo)為(0,),球在最高點B的坐標(biāo)為(3,).

(1)求拋物線的解析式;

(2)已知某市男子實心球的得分標(biāo)準(zhǔn)如表:

得分

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

擲遠(yuǎn)(米)

8.6

8.3

8

7.7

7.3

6.9

6.5

6.1

5.8

5.5

5.2

4.8

4.4

4.0

3.5

3.0

假設(shè)小明是春谷中學(xué)九年級的男生,求小明在實心球訓(xùn)練中的得分;

(3)在小明練習(xí)實心球的正前方距離投擲點7米處有一個身高1.2米的小朋友在玩耍,問該小朋友是否有危險(如果實心球在小孩頭頂上方飛出為安全,否則視為危險),請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AO是△ABC的角平分線.以O為圓心,OC為半徑作⊙O.

(1)求證:AB是⊙O的切線.

(2)已知AO交⊙O于點E,延長AO交⊙O于點D,tanD=,求的值.

(3)(3分)在(2)的條件下,設(shè)⊙O的半徑為3,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,I是△ABC的內(nèi)心,AI的延長線交邊BC于點D,交△ABC的外接圓于點E.

(1)BEIE相等嗎?請說明理由.

(2)連接BI,CI,CE,若∠BED=CED=60°,猜想四邊形BECI是何種特殊四邊形,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“共建環(huán)保模范城,共享綠色新重慶”,市政府強(qiáng)力推進(jìn)城市生活污水處理、生活垃圾處理設(shè)施建設(shè)改造工作.為此,某化工廠在一期工程完成后購買了4臺甲型和5臺乙型污水處理設(shè)備,共花費(fèi)資金102萬元,且每臺乙型設(shè)備的價格比每臺甲型設(shè)備價格少3萬元.已知每臺甲型設(shè)備每月能處理污水240噸,每臺乙型設(shè)備每月能處理污水180噸.今年該廠二期工程即將完成,產(chǎn)生的污水將大大增加,于是該廠決定再購買甲、乙兩型設(shè)備共12臺用于二期工程的污水處理,預(yù)算本次購買資金不超過129萬元,預(yù)計二期工程完成后每月將產(chǎn)生不少于2220噸污水.

1)請你計算每臺甲型設(shè)備和每臺乙型設(shè)備的價格各是多少萬元?

2)請你求出用于二期工程的污水處理設(shè)備的所有購買方案;

3)請你說明在(2)的所有方案中,哪種購買方案的總花費(fèi)最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA,PB分別與O相切于A,B兩點,ACB=60°.

(1)求P的度數(shù);

(2)若O的半徑長為4cm,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的弦,OP⊥OAAB于點P,過點B的直線交OP的延長線于點C,且CP=CB

1)求證:BC⊙O的切線;

2)若⊙O的半徑為,OP=1,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,第一個正方形ABCD的位置如圖所示,點A的坐標(biāo)為(2,0),點D的坐標(biāo)為(0,4).延長CB交x軸于點A1,作第二個正方形A1B1C1C;延長C1B1交x軸于點A2,作第三個正方形A2B2C2C1,…,按這樣的規(guī)律進(jìn)行下去,第2016個正方形的面積為_____

查看答案和解析>>

同步練習(xí)冊答案