【題目】如圖,△ABC 為等邊三角形,D、E 分別是邊 AC、BC 上的點,且AD=CE,AE 與 BD 相交于點 P.
(1)求∠BPE 的度數(shù);
(2)若 BF⊥AE 于點 F,試判斷 BP 與 PF 的數(shù)量關系并說明理由.
科目:初中數(shù)學 來源: 題型:
【題目】定義:有一組鄰邊相等,并且它們的夾角是直角的凸四邊形叫做等腰直角四邊形.
(1)如圖1,等腰直角四邊形ABCD,AB=BC,∠ABC=90°,
①若AB=CD=1,AB//CD,求對角線BD的長.
②若AC⊥BD,求證:AD=CD.
(2)如圖2,在矩形ABCD中,AB=5,BC=9,點P是對角線BD上一點,且BP=2PD,過點P作直線分別交邊AD,BC于點E,F(xiàn),使四邊形ABFE是等腰直角四邊形.求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年秋,珊瑚中學開啟“珊中大閱讀”活動,為了充實漂流書吧藏書,號召全校學生捐書,得到各班的大力支持.同時,本部校區(qū)的兩個年級組也購買藏書充實學校圖書室,初二年級組購買了甲、乙兩種自然科學書籍若干本,用去8315元;初一年級買了A、B兩種文學書籍若干本,用去6138元。其中A、B的數(shù)量分別與甲、乙的數(shù)量相等,且甲種書與B種書的單價相同,乙種書與A種書的單價相同.若甲種書的單價比乙種書的單價多7元,則甲種書籍比乙種書籍多買了_____________本.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠E=50°,∠BAC=50°,∠D=110°,求∠ABD的度數(shù).
請完善解答過程,并在括號內(nèi)填寫相應的理論依據(jù).
解:∵∠E=50°,∠BAC=50°,(已知)
∴∠E= (等量代換)
∴ ∥ .( )
∴∠ABD+∠D=180°.( )
∴∠D=110°,(已知)
∴∠ABD=70°.(等式的性質(zhì))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,正方形 ABCD 的面積為 16,△ABE 是等邊三角形,點 E 在正方形 ABCD 內(nèi),在對角線 AC 上有一點 P,使 PD+PE 的和最小,則這個最小值為_____________ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度數(shù).
小明的解題思路是:如圖2,過P作PE∥AB,通過平行線性質(zhì),可得∠APC=50°+60°=110°.
問題遷移:
(1)如圖3,AD∥BC,點P在射線OM上運動,當點P在A、B兩點之間運動時,∠ADP=∠α,∠BCP=∠β.試判斷∠CPD、∠α、∠β之間有何數(shù)量關系?請說明理由;
(2)在(1)的條件下,如果點P在A、B兩點外側(cè)運動時(點P與點A、B、O三點不重合),請你直接寫出∠CPD、∠α、∠β間的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,如果AB∥CD,∠B=37°,∠D=37°,那么BC與DE平行嗎?完成下面解答過中的填空或填寫理由.
解:∵AB∥CD ( 已知),
∴∠B= ( )
∵∠B=∠D=37°(已知)
∴ =∠D (等量代換)
∴BC∥DE ( ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1為北京城市女生從出生到15歲的平均身高統(tǒng)計圖,圖2是北京城市某女生從出生到12歲的身高統(tǒng)計圖.
請你根據(jù)以上信息預測該女生15歲時的身高約為 , 你的預測理由是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù) y=(m﹣2)x+3﹣m 的圖象不經(jīng)過第三象限,且 m 為正整數(shù).
(1)求 m 的值.
(2)在給出的平面直角坐標系中畫出該一次函數(shù)的圖象.
(3)當﹣4<y<0 時,根據(jù)函數(shù)圖象,求 x 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com