如圖,在等腰梯形ABCD中,AD∥BC,AD=3cm,BC=7cm,∠B,P為下底BC邊上一點(diǎn)(不與B、C重合),連結(jié)AP,過P點(diǎn)作PE交DC于E,使得∠APE=∠B.

(1)求證:△ABP∽△PCE;

(2)求腰AB的長;

(3)在底邊BC上是否存在一點(diǎn)P,使得DE:EC=5:3.如果存在,求出BP的長;如果不存在,請說明理由。

 

【答案】

(1)欲證△ABP∽△PCE,需找出兩組對應(yīng)角相等;由等腰梯形的性質(zhì)可得出∠B=∠C,根據(jù)三角形外角的性質(zhì)可證得∠EPC=∠BAP;由此得證;(2)AB=4cm;(3)BP=1cm或6cm

【解析】

試題分析:(1)欲證△ABP∽△PCE,需找出兩組對應(yīng)角相等;由等腰梯形的性質(zhì)可得出∠B=∠C,根據(jù)三角形外角的性質(zhì)可證得∠EPC=∠BAP;由此得證;

(2)可過作AF⊥BC于F,由等腰梯形的性質(zhì)得到AF是BC、AD差的一半,在Rt△ABF中,根據(jù)∠B的度數(shù)及BF的長即可求得AB的值;

(3)在(2)中求得了AB的長,即可求出DE:EC=5:3時,DE、CE的值.設(shè)BP的長為x,進(jìn)而可表示出PC的長,然后根據(jù)(1)的相似三角形,可得出關(guān)于AB、BP、PC、CE的比例關(guān)系式,由此可得出關(guān)于x的分式方程,若方程有解,則x的值即為BP的長.若方程無解,則說明不存在符合條件的P點(diǎn).

(1)由∠APC為△ABP的外角得∠APC=∠B+∠BAP;

∵∠B=∠APE

∴∠EPC=∠BAP

∵∠B=∠C

∴△ABP∽△PCE;

(2)過A作AF⊥BC于F

∵等腰梯形ABCD中,AD=3cm,BC=7cm,

∴BF=2cm, 

Rt△ABF中,∠B=60°,BF=2;

∴AB=4cm;

(3)存在這樣的點(diǎn)P.

∵DE:EC=5:3,DE+EC=DC=4

解之得EC=cm.

設(shè)BP=x,則PC=7-x

由△ABP∽△PCE可得

∵AB=4,PC=7-x,

解之得x1=1,x2=6,

經(jīng)檢驗(yàn)都符合題意,

即BP=1cm或BP=6cm.

考點(diǎn):等腰梯形的性質(zhì),相似三角形的判定和性質(zhì)

點(diǎn)評:解答本題的關(guān)鍵是熟練掌握相似三角形的對應(yīng)邊成比例,注意對應(yīng)字母在對應(yīng)位置上.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.點(diǎn)P從點(diǎn)A出發(fā),以2cm/s的速度沿AB向終點(diǎn)B運(yùn)動;點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度沿CD、DA向終點(diǎn)A運(yùn)動(P、Q兩點(diǎn)中,有一個點(diǎn)運(yùn)動到終點(diǎn)時,所有運(yùn)動即終止).設(shè)P、Q同時出發(fā)并運(yùn)動了t秒.
(1)當(dāng)PQ將梯形ABCD分成兩個直角梯形時,求t的值;
(2)試問是否存在這樣的t,使四邊形PBCQ的面積是梯形ABCD面積的一半?若存精英家教網(wǎng)在,求出這樣的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,E為AD的中點(diǎn),求證:BE=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點(diǎn)E、F分別在AB、DC上,且BE=3EA,CF=3FD.
求證:∠BEC=∠CFB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•廣州)如圖,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于點(diǎn)E,且EC=3,則梯形ABCD的周長是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:中考必備’04全國中考試題集錦·數(shù)學(xué) 題型:044

如圖,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,點(diǎn)P從A點(diǎn)出發(fā)沿AD邊向點(diǎn)D移動,點(diǎn)Q自A點(diǎn)出發(fā)沿A→B→C的路線移動,且PQ∥DC,若AP=x,梯形位于線段PQ右側(cè)部分的面積為S.

  

(1)分別求出當(dāng)點(diǎn)Q位于AB、BC上時,S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)當(dāng)線段PQ將梯形AB∥⊥CD分成面積相等的兩部分時,x的值是多少?

(3)當(dāng)(2)的條件下,設(shè)線段PQ與梯形AB∥⊥CD的中位線EF交于O點(diǎn),那么OE與OF的長度有什么關(guān)系?借助備用圖說明理由;并進(jìn)一步探究:對任何一個梯形,當(dāng)一直線l經(jīng)過梯形中位線的中點(diǎn)并滿足什么條件時,一定能平分梯形的面積?(只要求說出條件,不需要證明)

查看答案和解析>>

同步練習(xí)冊答案