【題目】已知:二次函數(shù)y=﹣x2+bx+c的圖象過點(﹣1,﹣8),(0,﹣3).
(1)求此二次函數(shù)的表達(dá)式,并用配方法將其化為y=a(x﹣h)2+k的形式;
(2)用五點法畫出此函數(shù)圖象的示意圖.
【答案】
(1)解:把(﹣1,﹣8),(0,﹣3)代入y=﹣x2+bx+c得: ,
解得: ,
∴二次函數(shù)的表達(dá)式為:y=﹣x2+4x﹣3,
y=﹣x2+4x﹣3=﹣(x﹣2)2+1
(2)解:頂點(2,1),
當(dāng)y=0時,﹣x2+4x﹣3=0,
x2﹣4x+3=0,
(x﹣1)(x﹣3)=0,
x1=1,x2=3,
∴與x軸交點為(1,0)、(3,0),
列表如下:
【解析】(1)把已知兩點(﹣1,﹣8),(0,﹣3)代入二次函數(shù)的解析式求出b和c的值,再配方成頂點式;(2)寫出頂點坐標(biāo),計算其與x軸的交點和與y軸的交點,列表、描點,畫出圖象.
【考點精析】本題主要考查了二次函數(shù)的圖象的相關(guān)知識點,需要掌握二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線y=x2+(b﹣1)x﹣5.
(1)寫出拋物線的開口方向和它與y軸交點的坐標(biāo);
(2)若拋物線的對稱軸為直線x=1,求b的值,并畫出拋物線的草圖(不必列表);
(3)如圖,若b>3,過拋物線上一點P(﹣1,c)作直線PA⊥y軸,垂足為A,交拋物線于另一點B,且BP=2PA,求這條拋物線所對應(yīng)的二次函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列關(guān)系式不正確的是( )
A.abc<0
B.a+b+c<0
C.2a﹣b>0
D.4a﹣b+c<0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,航空母艦始終以40千米/時的速度由西向東航行,飛機(jī)以800千米/時的速度從艦上起飛,向西航行執(zhí)行任務(wù),如果飛機(jī)在空中最多能連續(xù)飛行4個小時,那么它在起飛_____小時后就必須返航,才能安全停在艦上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c上部分點的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
從表可知,
①拋物線與x軸的交點為;
②拋物線的對稱軸是;
③函數(shù)y=ax2+bx+c的最大值為;
④x , y隨x增大而增大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AE、BF是角平分線,它們相交于點O,AD是高,∠BAC=54°,∠C=66°,求∠DAC、∠BOA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,D是BA延長線上一點,AE是∠DAC的平分線,P是AE上的一點(點P不與點A重合),連接PB,PC.通過觀察,測量,猜想PB+PC與AB+AC之間的大小關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把兩個含有45°角的直角三角板ACB和DEC如圖放置,點A,C,E在同一直線上,點D在BC上,連接BE,AD,AD的延長線交BE于點F.
(1)求證:△ADC≌△BEC;
(2)猜想AD與EB是否垂直?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,以AB為斜邊,作直角△ABD,使點D落在△ABC內(nèi),∠ADB=90°.
(1)如圖1,若AB=AC,∠DBA=60°,AD=7 ,點P、M分別為BC、AB邊的中點,連接PM,求線段PM的長;
(2)如圖2,若AB=AC,把△ABD繞點A逆時針旋轉(zhuǎn)一定角度,得到△ACE,連接ED并延長交BC于點P,求證:BP=CP;
(3)如圖3,若AD=BD,過點D的直線交AC于點E,交BC于點F,EF⊥AC,且AE=EC,請直接寫出線段BF、FC、AD之間的關(guān)系(不需要證明).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com