(2009•桂林)如圖,△ABC內(nèi)接于半圓,AB為直徑,過(guò)點(diǎn)A作直線MN,若∠MAC=∠ABC.
(1)求證:MN是半圓的切線.
(2)設(shè)D是弧AC的中點(diǎn),連接BD交AC于G,過(guò)D作DE⊥AB于E,交AC于F,求證:FD=FG.
(3)在(2)的條件下,若△DFG的面積為4.5,且DG=3,GC=4,試求△BCG的面積.

【答案】分析:(1)要證MN是⊙O的切線,只需證明MA⊥AB即可,易得∠MAC+∠CAB=90°,即MA⊥AB;故可得證.
(2)連接AD,則∠1=∠2,進(jìn)而可得∠1+∠DGF=90°,故∠FDG=∠FGD,即FD=FG.
(3)求△BCG的面積,只需證得△FGH∽△BGC,再根據(jù)相似三角形的性質(zhì),求得△BCG的面積.
解答:(1)證明:∵AB是直徑,
∴∠ACB=90°.
∴∠CAB+∠ABC=90°.(1分)
∵∠MAC=∠ABC,
∴∠MAC+∠CAB=90°.
即MA⊥AB.
∴MN是半圓的切線.(2分)

(2)證明:
證法1:∵D是弧AC的中點(diǎn),
∴∠DBC=∠2.(3分)
∵AB是直徑,
∴∠CBG+∠CGB=90°.
∵DE⊥AB,
∴∠FDG+∠2=90°.(4分)
∵∠DBC=∠2,
∴∠FDG=∠CGB=∠FGD.
∴FD=FG.(5分)
證法2:連接AD,則∠1=∠2,(3分)
∵AB是直徑,
∴∠ADB=90°.
∴∠1+∠DGF=90°.
又∵DE⊥AB,
∴∠2+∠FDG=90°.(4分)
∴∠FDG=∠FGD.
∴FD=FG.(5分)

(3)解:解法1:過(guò)點(diǎn)F作FH⊥DG于H,(6分)
又∵DF=FG,
∴S△FGH=S△DFG=×4.5=.(7分)
∵AB是直徑,F(xiàn)H⊥DG,
∴∠C=∠FHG=90°.(8分)
∵∠HGF=∠CGB,
∴△FGH∽△BGC.
.(9分)
∴S△BCG==16.(10分)

解法2:∵∠ADB=90°,DE⊥AB,
∴∠3=∠2.(6分)
∵∠1=∠2,
∴∠1=∠3.
∴AF=DF=FG.(7分)
∴S△ADG=9.(8分)
∵∠ADG=∠BCG,∠DGA=∠CGB.
∴△ADG∽△BCG.(9分)

∴S△BCG=.(10分)

解法3:連接AD,過(guò)點(diǎn)F作FH⊥DG于H.
∵SFDG=DG×FH=×3FH=4.5,
∴FH=3.
∵H是DG的中點(diǎn),F(xiàn)H∥AD,
∴AD=2FH=6
∴S△ADG=
∵∠ADG=∠BCG,∠DGA=∠CGB.
∴△ADG∽△BCG.
∵DG=3,GC=4,
=(2,
=(2
∴S△BCG=16.
點(diǎn)評(píng):本題考查了切線的判定.要證某線是圓的切線,已知此線過(guò)圓上某點(diǎn),連接圓心與這點(diǎn)(即為半徑),再證垂直即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2009年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2009•桂林)如圖已知直線L:y=x+3,它與x軸、y軸的交點(diǎn)分別為A、B兩點(diǎn).
(1)求點(diǎn)A、點(diǎn)B的坐標(biāo).
(2)設(shè)F為x軸上一動(dòng)點(diǎn),用尺規(guī)作圖作出⊙P,使⊙P經(jīng)過(guò)點(diǎn)B且與x軸相切于點(diǎn)F(不寫(xiě)作法,保留作圖痕跡).
(3)設(shè)(2)中所作的⊙P的圓心坐標(biāo)為P(x,y),求y關(guān)于x的函數(shù)關(guān)系式.
(4)是否存在這樣的⊙P,既與x軸相切又與直線L相切于點(diǎn)B?若存在,求出圓心P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年中考數(shù)學(xué)考前30天沖刺得分專(zhuān)練12:尺規(guī)作圖、命題(解析版) 題型:解答題

(2009•桂林)如圖已知直線L:y=x+3,它與x軸、y軸的交點(diǎn)分別為A、B兩點(diǎn).
(1)求點(diǎn)A、點(diǎn)B的坐標(biāo).
(2)設(shè)F為x軸上一動(dòng)點(diǎn),用尺規(guī)作圖作出⊙P,使⊙P經(jīng)過(guò)點(diǎn)B且與x軸相切于點(diǎn)F(不寫(xiě)作法,保留作圖痕跡).
(3)設(shè)(2)中所作的⊙P的圓心坐標(biāo)為P(x,y),求y關(guān)于x的函數(shù)關(guān)系式.
(4)是否存在這樣的⊙P,既與x軸相切又與直線L相切于點(diǎn)B?若存在,求出圓心P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年河北省保定市博野縣中考數(shù)學(xué)一模試卷(解析版) 題型:填空題

(2009•桂林)如圖,是一個(gè)正比例函數(shù)的圖象,把該圖象向左平移一個(gè)單位長(zhǎng)度,得到的函數(shù)圖象的解析式為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年廣西桂林中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2009•桂林)如圖,是一個(gè)正比例函數(shù)的圖象,把該圖象向左平移一個(gè)單位長(zhǎng)度,得到的函數(shù)圖象的解析式為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年廣西百色市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2009•桂林)如圖,是一個(gè)正比例函數(shù)的圖象,把該圖象向左平移一個(gè)單位長(zhǎng)度,得到的函數(shù)圖象的解析式為   

查看答案和解析>>

同步練習(xí)冊(cè)答案