【題目】如圖,在△ABC中,∠B=∠C=36°,AB的垂直平分線交BC于點D,交AB于點H,AC的垂直平分線交BC于點E,交AC于點G,連接AD,AE,則下列結(jié)論錯誤的是( )

A. B. AD,AE將∠BAC三等分

C. ABE≌△ACD D. SADHSCEG

【答案】A

【解析】試題解析:∵∠B=C=36°,AB=ACBAC=108°,DH垂直平分ABEG垂直平分AC,DB=DAEA=EC,∴∠B=DAB=C=CAE=36°,∴△BDA∽△BAC,,又∵∠ADC=B+BAD=72°,DAC=BACBAD=72°,∴∠ADC=DAC,CD=CA=BA,BD=BCCD=BCAB,則=,即=,故A錯誤;

∵∠BAC=108°,B=DAB=C=CAE=36°,∴∠DAE=BACDABCAE=36°,即∠DAB=DAE=CAE=36°,ADAE將∠BAC三等分,故B正確;

∵∠BAE=BAD+DAE=72°,CAD=CAE+DAE=72°,∴∠BAE=CAD,在BAECAD中,∵B=∠C,AB=AC,∠BAE=∠CAD∴△BAE≌△CAD,故C正確;

BAE≌△CAD可得SBAE=SCAD,即SBAD+SADE=SCAE+SADE,SBAD=SCAE,又∵DH垂直平分AB,EG垂直平分AC,SADH=SABD,SCEG=SCAE,SADH=SCEG,故D正確.

故選A.

型】單選題
結(jié)束】
11

【題目】紅細(xì)胞是人體中血液運輸氧氣的主要媒介,人體中紅細(xì)胞的直徑約為00000077m,將00000077用科學(xué)記數(shù)法表示為

【答案】77×10-6

【解析

試題分析:絕對值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定

試題解析:00000077用科學(xué)記數(shù)法表示為77×10-6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上,同學(xué)們已經(jīng)探究過“經(jīng)過已直線外一點作這條直線的垂線”的尺規(guī)作圖過程:

知:直線一點

作:直線垂線,使它經(jīng)過點.

法:如圖:(1)在直線任取兩點、;

(2)分別以點、圓心,,為半徑畫弧,兩弧相交于點;

(3)作直線.

參考以上材料作圖的方法,解決以下問題:

(1)以上材料作圖的依據(jù)是 .

(3)知:直線一點,

作:使它直線切。(規(guī)作圖,不寫做法,保留作圖痕跡,并把作圖痕跡用黑色簽字筆描黑)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】外賣小哥騎車從商家出發(fā),向東騎了3千米到達(dá)小林家,繼續(xù)騎2.5千米到達(dá)小紅家,然后向西騎了10千米到達(dá)小明家,最后返回商家。

1)以商家為原點,以向東的方向為正方向,用1個單位長度表示1千米,在數(shù)軸上表示出小明家,小林家,小紅家的位置。(小林家用點A表示,小紅家用點B表示,小明家用點C表示)

2)小明家距小林家______千米

3)若外賣小哥在騎車過程中每千米耗時3分鐘,那么外賣小哥在整個過程中共用時多久?(假設(shè)外賣小哥一直在勻速行駛,在每戶人家上門送外賣的時間忽略不計)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有如下說法:①直線是一個平角;②如果線段ABBC,則B是線段AC的中點;③射線AB與射線BA表示同一射線;④用一個擴(kuò)大2倍的放大鏡去看一個角,這個角擴(kuò)大2倍;⑤兩點之間,直線最短;⑥120.5°=120°30′,其中正確的有( 。

A.1B.2個C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A是拋物線上的一個動點,且點A在第一象限內(nèi)AEy軸于點E,點B坐標(biāo)為0,2,直線AB交軸于點C,點D與點C關(guān)于y軸對稱,直線DE與AB相交于點F,連結(jié)BD設(shè)線段AE的長為m,BED的面積為S

1當(dāng)時,求S的值

2求S關(guān)于的函數(shù)解析式

3若S=時,求的值;

當(dāng)m>2時,設(shè),猜想k與m的數(shù)量關(guān)系并證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果∠α和∠β互補,且∠α>β,則下列表示∠β的余角的式子中:①90°﹣β;②∠α﹣90°α+β);α﹣β).正確的有( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC是等邊三角形,點D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點F,使EF=AE,連接AF,CF,連接BE并延長交CF于點G.下列結(jié)論:

①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,則GF=2EG.其中正確的結(jié)論是 .(填寫所有正確結(jié)論的序號)

【答案】①②③④.

【解析】

試題分析:△ABC是等邊三角形,可得AB=AC=BC,∠BAC=∠ACB=60°,再因DE=DC,可判定△DEC是等邊三角形,所以ED=EC=DC,∠DEC=∠AEF=60°,

EF=AE,所以△AEF是等邊三角形,所以AF=AE,∠EAF=60°,在△ABE和△ACF中,AB=AC,BAE=CAF,AE=AF ,可判定△ABE≌△ACF,故①正確.②∠ABC=∠FDC,可得AB∥DF,再因∠EAF=∠ACB=60°,可得AB∥AF,即可判定四邊形ABDF是平行四邊形,所以DF=AB=BC,故②正確.③△ABE≌△ACF可得BE=CF,S△ABE=S△AFC,在△BCE和△FDC中,BC=DF,CE=CD,BE=CF ,可判定△BCE≌△FDC,所以S△BCE=S△FDC,即可得S△ABC=S△ABE+S△BCE=S△ACF+S△BCE=S△ABC=S△ACF+S△DCF,故③正確.④△BCE≌△FDC,可得∠DBE=∠EFG,再由∠BED=∠FEG可判定△BDE∽△FGE,所以=,=,又因BD=2DC,DC=DE,可得=2,FG=2EG.故④正確.

考點:三角形綜合題.

型】填空
結(jié)束】
19

【題目】先化簡,再求值:(a+1-)÷(),其中a=2+.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交ABAD于點M,N②分別以M,N為圓心,以大于MN的長為半徑作弧,兩弧相交于點P;③作AP射線,交邊CD于點Q,若DQ=2QC,BC=3,則平行四邊形ABCD周長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上兩點A、B所表示的數(shù)分別為ab,且滿足。點E以每秒1個單位的速度從原點O出發(fā)向右運動,同時點M從點A出發(fā)以每秒7個單位的速度向左運動,點N從點B出發(fā),以每秒10個單位的速度向右運動,P、Q分別為MEQN的中點。思考,在運動過程中,的值________________

查看答案和解析>>

同步練習(xí)冊答案