【題目】寧波與臺州兩城市之間開通了動車組高速列車.已知每隔1h有一列速度相同的動車組列車從寧波開往臺州.如圖所示,OA是第一列動車組列車離開寧波的路程s(單位:km)與運行時間t(單位:h)的函數(shù)圖象,BC是一列從臺州開往寧波的普通快車距寧波的路程s(單位:km)與運行時間t(單位:h)的函數(shù)圖象.請根據(jù)圖中信息,解答下列問題:

(1)B橫坐標0.5的意義是普通快車的發(fā)車時間比第一列動車組列車的發(fā)車時間晚   h,點B的縱坐標300的意義是   ;

(2)若普通列車的速度為100km/h,

BC的解析式;

求第二列動車組列車出發(fā)后多長時間與普通列車相遇.

【答案】(1)0.5,兩城相距300km;(1)①s=﹣100t+350;②第二列動車組列車出發(fā)后1小時與普通列車相遇.

【解析】

1)由圖可知,普通快車的發(fā)車時間比第一列動車組列車的發(fā)車時間晚0.5小時,兩城相距300km;
2)①由題意可知,B0.5,300),C3.5,0),用待定系數(shù)法即可求得;②由圖可得MN的解析式,聯(lián)立150t-150=-100t+350,可求出t值,即可解答;

1)晚0.5,兩城相距300km;

2)①設直線BC的解析式為skt+b,

B0.5300),C3.5,0),

,

解得,

s=﹣100t+350;

②設第二列動車組列車MN的解析式為sk1t+b1,

M10),N3,300),

解得,

s150t150,

由①可知直線BC的解析式為s=﹣100t+350,

150t150=﹣100t+350,

解得t2,

211

答:第二列動車組列車出發(fā)后1小時與普通列車相遇.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】有兩張完全重合的矩形紙片,小亮同學將其中一張繞點A順時針旋轉90°后得到矩形AMEF(如圖1),連接BD、MF,若此時他測得BD=8cm,∠ADB=30度.請回答下列問題:(1)試探究線段BD與線段MF的關系,并簡要說明理由;

(2)小紅同學用剪刀將△BCD與△MEF剪去,與小亮同學繼續(xù)探究.他們將△ABD繞點A順時針旋轉得△AB1D1,AD1FM于點K(如圖2),設旋轉角為β(0°<β<90°),當△AFK為等腰三角形時,請直接寫出旋轉角β的度數(shù);

(3)若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F(xiàn)2M2AD交于點P,A2M2BD交于點N,當NP∥AB時,求平移的距離是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD是△ABC的中線,過點C作直線CFAD

(問題)如圖,過點D作直線DGAB交直線CF于點E,連結AE,求證:ABDE

(探究)如圖,在線段AD上任取一點P,過點P作直線PGAB交直線CF于點E,連結AE、BP,探究四邊形ABPE是哪類特殊四邊形并加以證明.

(應用)在探究的條件下,設PEAC于點M.若點PAD的中點,且△APM的面積為1,直接寫出四邊形ABPE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點M是正方形ABCDCD上一點,連接AM,作DEAM于點E,BFAM于點F,連接BE,若AF1,四邊形ABED的面積為6,則∠EBF的余弦值是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).

(1)求n的值和拋物線的解析式;

(2)點D在拋物線上,DEy軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設點D的橫坐標為t(0t4),矩形DFEG的周長為p,求p與t的函數(shù)關系式以及p的最大值;

(3)將AOB繞平面內某點M旋轉90°或180°,得到A1O1B1,點A、O、B的對應點分別是點A1、O1、B1.若A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉180°時點A1的橫坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線與雙曲線交于點A,過點AO的平行線交雙曲線于點B,連接AB并延長與y軸交于點,則k的值為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線yax2+bx+3經(jīng)過點A(3,0)B(1,0)兩點,拋物線的頂點為M,直線y=﹣4x+9y軸交于點C,與直線OM交于點D

(1)求拋物線的解析式;

(2)Q(0,3)作不平行于x軸的直線l

如圖2,將拋物線平移,當頂點至原點時,直線l交拋物線于點E、F,在y軸上存在一點P,使△PEF的內心在y軸上,求點P的坐標;

直線l交△CMD的邊CM、CD于點GH(G點不與M點重合、H點不與D點重合)S四邊形MDHG,SCGH分別表示四邊形MDHG和△CGH的面積,試探究的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,BC=6,EBC邊的中點,點P在線段AD上,過PPFAEF,設PA=x

1)求證:PFA∽△ABE;

2)當點P在線段AD上運動時,設PA=x,是否存在實數(shù)x,使得以點P,F,E為頂點的三角形也與ABE相似?若存在,請求出x的值;若不存在,請說明理由;

3)探究:當以D為圓心,DP為半徑的⊙D線段AE只有一個公共點時,請直接寫出x滿足的條件:   

備用圖

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,點E、F在邊BC上,點D在邊AC上,連接ED、DFm,∠A=∠EDF120°

1)如圖1,點E、B重合,m1

BD平分∠ABC,求證:CD2CFCB;

,則   ;

2)如圖2,點E、B不重合.若BECF,m,求m的值.

查看答案和解析>>

同步練習冊答案