【題目】某中學舉辦校園好聲音朗誦大賽,根據(jù)初賽成績,七年級和八年級各選出5名選手組成七年級代表隊和八年級代表隊參加學校決賽兩個隊各選出的5名選手的決賽成績如圖所示:

1)根據(jù)所給信息填寫表格;

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

七年級

85

八年級

85

100

2)結合兩隊成績的平均數(shù)和中位數(shù),分析哪個隊的決賽成績較好;

3)若七年級代表隊決賽成績的方差為70,計算八年級代表隊決賽成績的方差,并判斷哪個代表隊的選手成績較為穩(wěn)定.

【答案】1)填表見解析;(2)七年級代表隊成績好些;(3)七年級代表隊選手成績較為穩(wěn)定.

【解析】

1)根據(jù)平均數(shù)、眾數(shù)和中位數(shù)的定義分別進行解答即可;

2)根據(jù)表格中的數(shù)據(jù),可以結合兩個年級成績的平均數(shù)和中位數(shù),說明哪個隊的決賽成績較好;

3)根據(jù)方差公式先求出八年級的方差,再根據(jù)方差的意義即可得出答案.

1)八年級的平均成績是:(75+80+85+85+100÷5=85(分);

85出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則眾數(shù)是85 分;

把八年級的成績從小到大排列,則中位數(shù)是80分;

填表如下:

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

初二

85

85

85

初三

85

80

100

2)七年級代表隊成績好些.

∵兩個隊的平均數(shù)都相同,七年級代表隊中位數(shù)高,

∴七年級代表隊成績好些.

3S八年級2=[70-852+100-852+100-852+75-852+80-852]=160 ;

S七年級2S八年級2

∴七年級代表隊選手成績較為穩(wěn)定.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,EBD中點,延長CD到點F,使

求證:

求證:四邊形ABDF為平行四邊形

,,求四邊形ABDF的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在操場上做游戲,他發(fā)現(xiàn)地上有一個不規(guī)則的封閉圖形ABC.為了知道它的面積,小明在封閉圖形內劃出了一個半徑為1米的圓,在不遠處向圈內擲石子,且記錄如下:

依此估計此封閉圖形ABC的面積是_____m2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C在⊙O上,∠ABC的平分線與AC相交于點D,與⊙O過點A的切線相交于點E.

(1)∠ACB=   °,理由是:   ;

(2)猜想△EAD的形狀,并證明你的猜想;

(3)若AB=8,AD=6,求BD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OM是∠AOC的平分線.ON∠BOC的平分線.

1)如圖1,當∠AOB=90°,∠BOC=60°時,∠MON的度數(shù)是多少?為什么?

2)如圖2,當∠AOB=70°,∠BOC=60°時,∠MON= (直接寫出結果)

3)如圖3,當∠AOB=α,∠BOC=β時,猜想:∠MON﹣∠CON= (直接寫出結果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩條直線AB,CD相交于點O,且∠AOC=∠AOD,射線OMOB開始繞O點逆時針方向旋轉,速度為15°/s,射線ON同時從OD開始繞O點順時針方向旋轉,速度為12°/s,運動時間為t秒(0t12,本題出現(xiàn)的角均小于平角)

1)圖中一定有   個直角;當t2時,∠MON的度數(shù)為   ,∠BON的度數(shù)為   

2)若OE平分∠COM,OF平分∠NOD,當∠EOF為直角時,請求出t的值;

3)當射線OM在∠COB內部,且是定值時,求t的取值范圍,并求出這個定值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】足球訓練中,為了訓練球員快速搶斷轉身,教練設計了折返跑訓練.教練在東西方向的足球場上畫了一條直線插上不同的折返旗幟,如果約定向西為正,向東為負,練習一組的行駛記錄如下(單位:米):+40,-30,+50-25,+25,-30,+15-28,+16,-20.

1)球員最后到達的地方在出發(fā)點的哪個方向?距出發(fā)點多遠?

2)球員訓練過程中,最遠處離出發(fā)點多遠?

3)球員在一組練習過程中,跑了多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC的兩邊OA、OC在坐標軸上,且OC=2OAM、N分別為OA、OC的中點,BMAN交于點E,若四邊形EMON的面積為2,則經過點B的雙曲線的解析式為(  )

A. y= B. y= C. y= D. y=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在正方形ABCD中,E為CD邊上的一點,F(xiàn)為BC的延長線上一點,CE=CF。

⑴△BCE與△DCF全等嗎?說明理由;

⑵若∠BEC=60o,求∠EFD。

查看答案和解析>>

同步練習冊答案