【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+bx+c與軸相交于A、B兩點,與軸相交于點C,OA=1,OC=3,連接BC.
(1)求b的值;
(2)點D是直線BC上方拋物線一動點(點B、C除外),當△BCD的面積取得最大值時,在軸上是否存在一點P,使得|PB﹣PD|最大,若存在,請求出點P的坐標;若不存在,請說明理由.
(3)在(2)的條件下,若在平面上存在點Q,使得以點B、C、D、Q為頂點的四邊形為平行四邊形,請直接寫出點Q坐標.
【答案】(1)b=2,c=3;(2)P(0,);(3) (-,),(,-),(,),
【解析】
(1)根據OA=1,OC=3得出點A和C的坐標,代入拋物線的解析式列方程組可得b的值;(2)寫出拋物線的解析式,利用三角形面積公式可知,當底邊BC一定時,高最大時其△BCD的面積最大,即作BC的平行線,其平行線的距離最大時,即平行線l與拋物線有一個交點時,交點為D,利用方程組的解可得D的坐標,最后根據三角形的三邊關系確定當P、B、D三點共線時,|PB﹣PD|最大,利用待定系數法求直線BD的解析式,與y軸的交點就是點P;(3)如圖4,畫出平行四邊形,有三種情況:根據平移規(guī)律確定Q的坐標.
(1)∵OA=1,OC=3,
∴A(-1,0),C(0,3),
把A(-1,0),C(0,3)代入拋物線y=-x2+bx+c中得:
∵,
(2)由(1)得:拋物線y=-x2+2x+3,
當y=0時,-x2+2x+3=0,
解得:x=-1或3,
∴B(3,0),
設直線BC的解析式為:y=kx+b,
,
∴直線BC的解析式為:y=-x+3,
如圖1,作直線l∥BC,
設直線l的解析式為:y=-x+b,
由題意可知:△BCD中邊BC長一定,當△BCD的面積取得最大值時,即以BC為底邊,其高最大,
也就是直線l與拋物線有一個交點時,三角形高最大,△BCD的面積最大,
則,
-x2+2x+3=-x+b,
x2-3x+b-3=0,
△=(-3)2-4×1×(b-3)=0,
,
∵P是y軸上任意一點,
如圖2,|PB-PD|<BD,
∴當P、B、D三點共線時,|PB-PD|最大,如圖3,
(3)如圖4,分三種情況:
①當CD為平行四邊形的對角線時,
科目:初中數學 來源: 題型:
【題目】某中學為了了解學生每周在校體育鍛煉時間,在本校隨機抽取了若干名學生進行調查,并依據調查結果繪制了以下不完整的統(tǒng)計圖表,請根據圖表信息解答下列問題:
時間(小時) | 頻數(人數) | 頻率 |
2≤t<3 | 4 | 0.1 |
3≤t<4 | 10 | 0.25 |
4≤t<5 | a | 0.15 |
5≤t<6 | 8 | b |
6≤t<7 | 12 | 0.3 |
合計 | 40 | 1 |
(1)表中的a= ,b= ;
(2)請將頻數分布直方圖補全;
(3)若該校共有1200名學生,試估計全校每周在校參加體育鍛煉時間至少有4小時的學生約為多少名?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2016年5月6日,中國第一條具有自主知識產權的長沙磁浮線正式開通運營,該路線連接了長沙火車南站和黃花國際機場兩大交通樞紐,沿線生態(tài)綠化帶走廊的建設尚在進行中,屆時將給乘客帶來美的享受.星城渣土運輸公司承包了某標段的土方運輸任務,擬派出大、小兩種型號的渣土運輸車運輸土方,已知2輛大型渣土運輸車與3輛小型渣土運輸車一次共運輸土方31噸,5輛大型渣土運輸車與6輛小型渣土運輸車一次共運輸土方70噸.
(1)一輛大型渣土運輸車和一輛小型渣土運輸車一次各運輸土方多少噸?
(2)該渣土運輸公司決定派出大、小兩種型號的渣土運輸車共20輛參與運輸土方,若每次運輸土方總量不少于148噸,且小型渣土運輸車至少派出2輛,則有哪幾種派車方案?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是用4個相同的小矩形與1個小正方形密鋪而成的正方形圖案,已知大正方形的面積為49,小正方形的面積為4,若用x,y(其中x>y)表示小矩形的長與寬,請觀察圖案,指出以下關系式中不正確的是( )
A.x+y=7B.x﹣y=2C.x2﹣y2=4D.4xy+4=49
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=ax+b(a≠0)的圖象與反比例函數的圖象交于第二、四象限內的A,B兩點,與軸交于C點,過點A作AH⊥軸,垂足為H,OH=3,tan∠AOH=,點B的坐標為(,﹣2).
(1)求該反比例函數和一次函數的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】荊州古城是聞名遐邇的歷史文化名城,“五一”期間相關部門對到荊州觀光游客的出行方式進行了隨機抽樣調查,整理后繪制了兩幅統(tǒng)計圖(尚不完整).根據圖中信息,下列結論錯誤的是( 。
A. 本次抽樣調查的樣本容量是5000
B. 扇形圖中的m為10%
C. 樣本中選擇公共交通出行的有2500人
D. 若“五一”期間到荊州觀光的游客有50萬人,則選擇自駕方式出行的有25萬人
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的對稱中心在坐標原點,AB∥x軸,AD、BC分別與x軸交于E、F,連接BE、DF,若正方形ABCD有兩個頂點在雙曲線y=上,實數a滿足a3﹣a=1,則四邊形DEBF的面積是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC和△ADE均為等邊三角形,點O是AC的中點,點D在射線BO上,連結OE,EC,則∠ACE=_____°;若AB=1,則OE的最小值=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(發(fā)現問題)
如圖1,已知,以點為直角頂點,為腰向外作等腰直角、請你以為直角頂點、為腰,向外作等腰直角(不寫作法,保留作圖痕跡).連接、.那么與的數量關系是________.
(拓展探究)
如圖2,已知,以、為邊向外作正方形和正方形,連接、,試判斷與之間的數量關系,并說明理由.
(解決問題)
如圖3,有一個四邊形場地,,,,,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com