【題目】如圖,在平面直角坐標(biāo)系xOy中,菱形ABCD的對(duì)角線ACBD交于點(diǎn)P-1,2),ABx軸于點(diǎn)E,正比例函數(shù)y=mx的圖像與反比例函數(shù)的圖像交于A,P兩點(diǎn).

1)求mn的值與點(diǎn)A的坐標(biāo)

2)求的值

【答案】1m=﹣2,n1,點(diǎn)A的坐標(biāo)為(1,﹣2);(2

【解析】

1)根據(jù)點(diǎn)P的坐標(biāo),利用待定系數(shù)法可求出m,n的值,聯(lián)立正、反比例函數(shù)解析式成方程組,通過解方程組可求出點(diǎn)A的坐標(biāo)(利用正、反比例函數(shù)圖象的對(duì)稱性結(jié)合點(diǎn)P的坐標(biāo)找出點(diǎn)A的坐標(biāo)亦可);

2)由點(diǎn)A的坐標(biāo)可得出AEOE,AO的長,由相似三角形的性質(zhì)可得出∠CDP=∠AOE,再利用正弦的定義即可求出sinCDB的值.

1)解:將點(diǎn)P(-1,2)代入ymx,得:2=-m,

解得:m=-2,

∴正比例函數(shù)解析式為y=-2x

將點(diǎn)P(-1,2)代入y,得:2=-(n3),

解得:n1,

∴反比例函數(shù)解析式為y=-

聯(lián)立正、反比例函數(shù)解析式成方程組,得:,

解得:,

∴點(diǎn)A的坐標(biāo)為(1,-2).

2)解:∵點(diǎn)A的坐標(biāo)為(1,-2),

AE2,OE1AO

∵四邊形ABCD是菱形,

ACBD,ABCD,

∴∠DCP=∠BAP,即∠DCP=∠OAE

ABx軸,

∴∠AEO=∠CPD90°,

∴△CPD∽△AEO,

∴∠CDP=∠AOE,

sinCDBsinAOE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形和正六邊形邊長均為1,如圖所示,把正方形放置在正六邊形外,使邊與邊重合,按下列步驟操作:將正方形在正六邊形外繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使邊與邊重合,完成第一次旋轉(zhuǎn);再繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使邊與邊重合,完成第二次旋轉(zhuǎn);此時(shí)點(diǎn)經(jīng)過路徑的長為___________.若按此方式旋轉(zhuǎn),共完成六次,在這個(gè)過程中點(diǎn),之間距離的最大值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,漏壺是一種古代計(jì)時(shí)器.在它內(nèi)部盛一定量的水,水從壺下的小孔漏出.壺內(nèi)壁有刻度,人們根據(jù)壺中水面的位置計(jì)算時(shí)間.用x(小時(shí))表示漏水時(shí)間,y(厘米)表示壺底到水面的高度,某次計(jì)時(shí)過程中,記錄到部分?jǐn)?shù)據(jù)如下表:

漏水時(shí)間x(小時(shí))

3

4

5

6

壺底到水面高度y(厘米)

9

7

5

3

1)問yx的函數(shù)關(guān)系屬于一次函數(shù)、二次函數(shù)和反比例函數(shù)中的哪一種?求出該函數(shù)解析式及自變量x的取值范圍;

2)求剛開始計(jì)時(shí)時(shí)壺底到水面的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中央電視臺(tái)的“中國詩詞大賽”節(jié)目文化品位高內(nèi)容豐富,某校初二年級(jí)模擬開展“中國詩詞大賽”比賽對(duì)全年級(jí)同學(xué)成績(jī)進(jìn)行統(tǒng)計(jì)后分為“優(yōu)秀”、“良好”、“一般”、“較差”四個(gè)等級(jí),并根據(jù)成績(jī)繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖中的信息,回答下列問題

1)扇形統(tǒng)計(jì)圖中“優(yōu)秀”所對(duì)應(yīng)的扇形的圓心角為 并將條形統(tǒng)計(jì)圖補(bǔ)充完整.

2)此次比賽有四名同學(xué)活動(dòng)滿分,分別是甲、乙、丙、丁,現(xiàn)從這四名同學(xué)中挑選兩名同學(xué)參加學(xué)校舉行的“中國詩詞大賽”比賽,請(qǐng)用列表法或畫樹狀圖法,求出選中的兩名同學(xué)恰好是甲、丁的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的半徑為2A為圓內(nèi)一定點(diǎn),AO1P為圓上一動(dòng)點(diǎn),以AP為邊作等腰△APG,APPG,∠APG120°,OG的最大值為( 。

A.1+B.1+2C.2+D.21

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)k0)與一次函數(shù)的圖象相交于兩點(diǎn)A(,),B(,),線段ABy軸與C,當(dāng)| |=2AC = 2BC時(shí),k、b的值分別為(

A. k,b2 B. k,b1 C. k,b D. k,b

【答案】D

【解析】AC=2BCA點(diǎn)的橫坐標(biāo)的絕對(duì)值是B點(diǎn)橫坐標(biāo)絕對(duì)值的兩倍.∵點(diǎn)A、點(diǎn)B都在一次函數(shù)yx+b的圖象上,設(shè)Bm, m+b),A-2m,-m+b),||=2,m-(-2m)=2,解得m=又∵點(diǎn)A、點(diǎn)B都在反比例函數(shù)的圖象上,∴+b=(--+b),解得b=,k=×+=,故選D.

型】單選題
結(jié)束】
11

【題目】若點(diǎn)(4m)在反比例函數(shù)x≠0)的圖象上,則m的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)Ax1,1)、Bx2,﹣2)、Cx3,﹣3)在反比例函數(shù)y=﹣的圖象上,則x1、x2x3的大小關(guān)系是( 。

A.x1x2x3B.x1x3x2C.x3x1x2D.x2x1x3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖,有下列6個(gè)結(jié)論:①abc0;②ba+c; 4a+2b+c0;④2a+b+c0;⑤>0;⑥2a+b=0;其中正確的結(jié)論的有_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)不僅是一門學(xué)科,也是一種文化,即數(shù)學(xué)文化.數(shù)學(xué)文化包括數(shù)學(xué)史、數(shù)學(xué)美和數(shù)學(xué)應(yīng)用等多方面.古時(shí)候,在某個(gè)王國里有一位聰明的大臣,他發(fā)明了國際象棋,獻(xiàn)給了國王,國王從此迷上了下棋,為了對(duì)聰明的大臣表示感謝,國王答應(yīng)滿足這位大臣的一個(gè)要求.大臣說:就在這個(gè)棋盤上放一些米粒吧.格放粒米,第格放粒米,第格放粒米,然后是粒、粒、······一只到第.”“你真傻!就要這么一點(diǎn)米粒?國王哈哈大笑.大臣說:就怕您的國庫里沒有這么多米!國王的國庫里真沒有這么多米嗎?題中問題就是求是多少?請(qǐng)同學(xué)們閱讀以下解答過程就知道答案了.

設(shè),

即:

事實(shí)上,按照這位大臣的要求,放滿一個(gè)棋盤上的個(gè)格子需要粒米.那么到底多大呢?借助計(jì)算機(jī)中的計(jì)算器進(jìn)行計(jì)算,可知答案是一個(gè)位數(shù): ,這是一個(gè)非常大的數(shù),所以國王是不能滿足大臣的要求.請(qǐng)用你學(xué)到的方法解決以下問題:

我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問尖頭幾盞燈?”意思是:一座層塔共掛了盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的倍,則塔的頂層共有多少盞燈?

計(jì)算:

某中學(xué)數(shù)學(xué)社團(tuán)開發(fā)了一款應(yīng)用軟件,推出了解數(shù)學(xué)題獲取軟件激活碼的活動(dòng).這款軟件的激活碼為下面數(shù)學(xué)問題的答案:

已知一列數(shù):,其中第一項(xiàng)是,接下來的兩項(xiàng)是,再接下來的三項(xiàng)是,以此類推,求滿足如下條件的所有正整數(shù),且這一數(shù)列前項(xiàng)和為的正整數(shù)冪.請(qǐng)直接寫出所有滿足條件的軟件激活碼正整數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案