已知:如圖,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D為AB邊上一點,求證:
(1)△ACE≌△BCD;
(2)AD2+AE2=DE2
分析:(1)根據等腰直角三角形性質得出CE=CD,AC=CB,∠ACB=∠DCE=90°,求出∠ACE=∠DCB,根據SAS推出即可;
(2)求出∠B=∠BAC=45°,根據全等得出∠B=∠CAE=45°,求出∠DAE=90°,根據勾股定理求出即可.
解答:
證明:(1)∵△ACB和△DCE都是等腰直角三角形,
∴CE=CD,AC=CB,∠ACB=∠DCE=90°,
∴∠ACB-∠ACD=∠DCE-∠ACD,
∴∠ACE=∠DCB,
在△ACE和△BCD中
AC=BC
∠ACE=∠DCB
CE=CD

∴△ACE≌△BCD(SAS).

(2)∵∠ACB=90°,AC=BC,
∴∠B=∠BAC=45°,
∵△ACE≌△BCD,
∴∠B=∠CAE=45°,
∴∠DAE=∠CAE+∠BAC=45°+45°=90°,
∴在Rt△AED中,由勾股定理得:AD2+AE2=DE2
點評:本題考查了等腰直角三角形性質,全等三角形的性質和判定,勾股定理的應用,主要考查學生的推理能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、已知,如圖,△ABC中,∠BAC=90°,AD⊥BC于點D,BE平分∠ABC,交AD于點M,AN平分∠DAC,交BC于點N.
求證:四邊形AMNE是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,∠ABC、∠ACB 的平分線相交于點F,過F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC是等邊三角形,點D在AB上,點E在AC的延長線上,且BD=CE,DE交BC于F,求證:BF=CF+CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AB=AC=10,BC=16,點D在BC上,DA⊥CA于A.
求:BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AD⊥BC,BD=DE,點E在AC的垂直平分線上.
(1)請問:AB、BD、DC有何數(shù)量關系?并說明理由.
(2)如果∠B=60°,請問BD和DC有何數(shù)量關系?并說明理由.

查看答案和解析>>

同步練習冊答案