如圖,若根據(jù)“SAS”來說明△ABC≌△DBC,則需補充的條件是(  )
分析:根據(jù)已知結合隱含條件BC=BC即可得出全等三角形.
解答:解:當AB=DB,∠3=∠4時,△ABC≌△DBC,
理由:在△ABC和△DBC中
AB=BD
∠3=∠4
BC=CB
,
∴△ABC≌△DBC(SAS).
故選;C.
點評:本題主要考查全等三角形的判定方法.注意兩個三角形中的公共邊通常是證兩個三角形全等隱含的條件.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

10、已知如圖,在△ABF和△DEC中,∠A=∠D,AB=DE,若再添加條件
AF
=
DC
,則可根據(jù)SAS證得△ABF≌△DEC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、(1)如圖,方格紙中的△ABC的三個頂點分別在小正方形的頂點(格點)上,稱為格點三角形.請在方格紙上按下列要求畫圖.
在圖①中畫出與△ABC全等且有一個公共頂點的格點△A′B′C′;
在圖②中畫出與△ABC全等且有一條公共邊的格點△A″B″C″.


(2)先閱讀然后回答問題:
如圖,D是△ABC中BC邊上一點,E是AD上一點,AB=AC,EB=EC,∠BAE=∠CAE,試說明△4EB絲AAEC.
解:在△ABE和△AEC中,

因為AB=AC,∠BAE=∠CAE,EB=EC,…第1步
根據(jù)“SAS”可以知道△ABE≌△AEC.…第2步
請問上面解題過程正確嗎?若正確,請寫出每一步推理的依據(jù);若不正確,請指出錯在哪一步,并寫出你認為正確的過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

感受理解
如圖①,△ABC是等邊三角形,AD、CE分別是∠BAC、∠BCA的平分線,AD、CE相交于點F,則線段FE與FD之間的數(shù)量關系是
EF=FD
EF=FD

自主學習
事實上,在解決幾何線段相等問題中,當條件中遇到角平分線時,經(jīng)常采用下面構造全等三角形的解決思路
如:在圖②中,若C是∠MON的平分線OP上一點,點A在OM上,此時,在ON上截取OB=OA,連接BC,根據(jù)三角形全等判定(SAS),容易構造出全等三角形△OBC和△OAC,從而得到線段CA與CB相等
學以致用
參考上述學到的知識,解答下列問題:
如圖③,△ABC不是等邊三角形,但∠B=60°,AD、CE分別是∠BAC、∠BCA的平分線,AD、CE相交于點F.求證:FE=FD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB=AC,若要使△ABE≌△ACD,根據(jù)SAS,則還需要
AE=AD
AE=AD

查看答案和解析>>

同步練習冊答案