如圖所示,正方形ABCD中,E、M、F、N分別是AD、AB、BC、CD上的點(diǎn),若EF⊥MN.求證:EF=MN.

答案:
解析:

  證明:如圖,作DG∥EF交BC于G,作CH∥MN交AB于H.

  ∵CH∥MN,DG∥EF,EF⊥MN,∴CH⊥DG.

  又∵DC⊥BC,∴∠BCH=∠CDG.

  ∵BC=CD,∠HBC=∠GCD,∴△BCH≌△CDG.

  ∴CH=DG.又∵AD∥BC,DG∥EF,

  ∴四邊形EFGD為平行四邊形,∴EF=DG.

  同理CH=MN,∴MN=EF.

  解析:解答本題的關(guān)鍵是如何將條件和問(wèn)題很好地結(jié)合起來(lái).EF、MN的位置較孤立,不妨分別過(guò)D、C作DG∥EF、CH∥MN,將問(wèn)題一步步轉(zhuǎn)化,來(lái)證明結(jié)論.

  說(shuō)明:①本題實(shí)際上是平行移動(dòng)法,經(jīng)常利用這一方法將條件和問(wèn)題相對(duì)集中.

  ②本題還可分別過(guò)E、N作CD、BC的平行線來(lái)解決.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、如圖所示,正方形ABCD中,E,F(xiàn)是對(duì)角線AC上兩點(diǎn),連接BE,BF,DE,DF,則添加下列哪一個(gè)條件可以判定四邊形BEDF是菱形( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,正方形ABCD中,E為AB中點(diǎn),F(xiàn)為AD中點(diǎn),DE、CF交于O點(diǎn),求證:DE⊥CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,DE平分∠ODC交OC于點(diǎn)E,若AB=2,則線段OE的長(zhǎng)為( 。
A、
2
2
B、
2
2
3
C、2-
2
D、
2
-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,正方形ABCD的邊長(zhǎng)為1,點(diǎn)E為AB的中點(diǎn),以E為圓心,1為半徑作圓,分別交AD,BC于M,N兩點(diǎn),與DC切于點(diǎn)P,則圖中陰影部分面積是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的正方形網(wǎng)格中(網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)是1),△ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o的直角坐標(biāo)系中解答下列問(wèn)題:
(1)作出△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°的△AB1C1,再作出△AB1C1關(guān)于原點(diǎn)O成中心對(duì)稱的△A1B2C2.(要求:用直尺作出圖形即可,不用保留作圖痕跡,不寫作法.)
(2)點(diǎn)B1的坐標(biāo)是
(-2,-3)
(-2,-3)
,點(diǎn)C2的坐標(biāo)是
(3,1)
(3,1)

(3)求△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°的過(guò)程中,線段AB掃過(guò)的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案