【題目】如圖.已知在平面直角坐標系中.點 A0m),點 Bn0),D2m,n),且 mn 滿足(m22+=0,將線段AB向左平移,使點B與點 O重合,點C與點A對應(yīng).

1)求點C、D的坐標;

2)連接CD,動點P從點O出發(fā),以每秒1個單位的速度,沿射線OB方向運動,設(shè)點P運動時間為t秒,是否存在某一時刻,使 SPCD=4SAOB,若存在,請求出t值,并寫出P點坐標;若不存在,請說明理由.

【答案】1)點C的坐標為(﹣42);(2P點坐標為(40).

【解析】

1)由(m22+=0,得m=2,n=4,則A02),B40),D44),

再由平移的性質(zhì)可得點C的坐標為(﹣42);

2)根據(jù)題意得[4﹣(﹣4+t﹣(﹣4]×4÷2[4﹣(﹣442÷2[t﹣(﹣4]×2÷2,解得t=4,則P點坐標為(40).

1)∵(m22+=0,

m2=0n4=0,

解得m=2n=4,

A02),B40),D44),

∵將線段AB向左平移,使點B與點O重合,點C與點A對應(yīng),

∴點C的坐標為(﹣4,2);

2)存在.

如果SPCD=4SAOB,則有:

[4﹣(﹣4+t﹣(﹣4]×4÷2[4﹣(﹣442÷2[t﹣(﹣4]×2÷2

=4×4×2÷2),

解得t=4,

P點坐標為(40).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,點,分別在邊上,有下列條件:

;②;③;④.其中,能使四邊形是平行四邊形的條件有( ).

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,A(a,0),C(0,c)且滿足:(a+6)2+0,長方形ABCO在坐標系中(如圖),點O為坐標系的原點.

(1)求點B的坐標.

(2)如圖1,若點M從點A出發(fā),以2個單位/秒的速度向右運動(不超過點O),點N從原點O出發(fā),以1個單位/秒的速度向下運動(不超過點C),設(shè)M、N兩點同時出發(fā),在它們運動的過程中,四邊形MBNO的面積是否發(fā)生變化?若不變,求其值;若變化,求變化的范圍.

(3)如圖2Ex軸負半軸上一點,且∠CBE=∠CEBFx軸正半軸上一動點,∠ECF的平分線CDBE的延長線于點D,在點F運動的過程中,請?zhí)骄俊?/span>CFE與∠D的數(shù)量關(guān)系,并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成下面的證明:

已知:如圖,AB∥DE,求證:∠D+∠BCD﹣∠B=180°,

證明:過點CCF∥AB.

∵AB∥CF(已知),

∴∠B=      ).

∵AB∥DE,CF∥AB( 已知 ),

∴CF∥DE (   

∴∠2+   =180° (   

∵∠2=∠BCD﹣∠1,

∴∠D+∠BCD﹣∠B=180° (   ).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,AB是⊙O的直徑,AB=10, = = ,點E是點D關(guān)于AB的對稱點,M是AB上的一動點,下列結(jié)論:①∠BOE=60°;②∠CED= ∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述結(jié)論中正確的個數(shù)是( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題是真命題的是(  )

A.一組對邊平行且有一組對角相等的四邊形是平行四邊形

B.對角線相等的四邊形是矩形

C.一組對邊平行且另一組對邊相等的四邊形是平行四邊形

D.對角線互相垂直且相等的四邊形是正方形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中華文明,源遠流長;中華漢字,寓意深廣.為了傳承優(yōu)秀傳統(tǒng)文化,某校團委組織了一次全校3 000名學生參加的漢字聽寫大賽,賽后發(fā)現(xiàn)所有參賽學生的成績均不低于50分,為了更好地了解本次大賽的成績分布情況,隨機抽取了其中200名學生的成績(成績x取整數(shù),總分100分)作為樣本進行整理,得到下列不完整的統(tǒng)計圖表:

請根據(jù)所給信息,解答下列各題:

1a= ;

2)請把頻數(shù)分布直方圖補充完整;

3)若測試成績在90分以上(包括90分)為優(yōu)等,則該校參加這次比賽的3 000名學生中成績?yōu)?/span>優(yōu)等的約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣2(1﹣m)x+m2=0的兩實數(shù)根為x1 , x2 , 則y=x1+x2+2x1x2的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在扇形AOB中,∠AOB=90°,以點A為圓心,OA的長為半徑作 于點C,若OA=2,則陰影部分的面積為

查看答案和解析>>

同步練習冊答案