【題目】如圖,某地質(zhì)公園中有兩座相鄰小山.游客需從左側(cè)小山山腳E處乘坐豎直觀光電梯上行100米到達(dá)山頂C處,然后既可以沿水平觀光橋步行到景點(diǎn)P處,也可以通過滑行索道到達(dá)景點(diǎn)Q處,在山頂C處觀測(cè)坡底A的俯角為75°,觀測(cè)Q處的俯角為30°,已知右側(cè)小山的坡角為30°(圖中的點(diǎn)C,E,A,B,P,Q均在同一平面內(nèi),點(diǎn)A,Q,P在同一直線上)
(1)求∠CAP的度數(shù)及CP的長(zhǎng)度;
(2)求P,Q兩點(diǎn)之間的距離.(結(jié)果保留根號(hào))
【答案】(1)75°,200(2)
【解析】
(1)根據(jù)平行線的性質(zhì)得到∠APC=∠PAB=30°,根據(jù)三角形的內(nèi)角和得到∠CAP=180°﹣75°﹣30°=75°,根據(jù)等腰三角形的判定定理得到PC=AP,過P作PF⊥AB于F,根據(jù)直角三角形的性質(zhì)即可得到結(jié)論;(2)根據(jù)等腰三角形的判定定理得到CQ=PQ,過Q作QH⊥PC于H,根據(jù)直角三角形的性質(zhì)即可得到結(jié)論.
(1)∵PC∥AB,
∴∠APC=∠PAB=30°,
∴∠CAP=180°﹣75°﹣30°=75°,
∴∠CAP=∠PCA,
∴PC=AP,
過P作PF⊥AB于F,
則PF=CE=100,
∴PA=2PF=200米;
(2)∵∠PCQ=∠QPC=30°,
∴CQ=PQ,
過Q作QH⊥PC于H,
∴PH=PC=100,
∴PQ=米.
答:P,Q兩點(diǎn)之間的距離是米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果生產(chǎn)基地,某天安排30名工人采摘枇杷或草莓(每名工人只能做其中一項(xiàng)工作),并且每人每天摘0.4噸枇杷或0.3噸草莓,當(dāng)天的枇杷售價(jià)每噸2000元,草莓售價(jià)每噸3000元,設(shè)安排其中x名工人采摘枇杷,兩種水果當(dāng)天全部售出,銷售總額達(dá)y元.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若要求當(dāng)天采摘枇杷的數(shù)量不少于草莓的數(shù)量,求銷售總額的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)一個(gè)不透明的口袋中裝有2個(gè)紅球(記為紅球1、紅球2)、1個(gè)白球、1個(gè)黑球,這些球除顏色外都相同,將球搖勻.
(1)從中任意摸出1個(gè)球,恰好摸到紅球的概率是 ;
(2)先從中任意摸出1個(gè)球,再從余下的3個(gè)球中任意摸出1個(gè)球,請(qǐng)用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是一個(gè)紙杯,它的母線延長(zhǎng)后形成的立體圖形是圓錐,該圓錐的側(cè)面展開圖是扇形OAB,經(jīng)測(cè)量,紙杯開口圓的直徑為6cm,下底面直徑為4,母線長(zhǎng)EF=9cm,求扇形OAB的圓心角及這個(gè)紙杯的表面積.(結(jié)果保留根號(hào)和π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一艘貨輪以36km/h的速度在海面上沿正北方向航行,當(dāng)行駛至A處時(shí),發(fā)現(xiàn)北偏東37°方向有一個(gè)燈塔B,貨輪繼續(xù)向北航行20分鐘后到達(dá)C處,發(fā)現(xiàn)燈塔B在它的北偏東67°方向,則此時(shí)貨輪與燈塔B的距離為_____km.(結(jié)果精確到0.1,參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,sin67°≈0.920,cos67°≈0.391,tan67°≈2.356)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,tanA=,AB=13,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△A'B'C,P為線段A′B′上的動(dòng)點(diǎn),以點(diǎn)P為圓心,PA′長(zhǎng)為半徑作⊙P,當(dāng)⊙P與△ABC的邊相切時(shí),⊙P的半徑為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,裕安中學(xué)體育訓(xùn)練中,一實(shí)心球從斜坡O點(diǎn)處拋出,球的拋出路線可以用二次函數(shù)刻畫,斜坡可以用一次函數(shù)刻畫,實(shí)心球的落點(diǎn)A的坐標(biāo)是().
(1)求二次函數(shù)解析式和二次函數(shù)圖象的最高點(diǎn)P的坐標(biāo);
(2)連接拋物線的最高點(diǎn)P與點(diǎn)O、A得△POA,求△POA的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形ABCD是菱形,邊BC在x軸上,點(diǎn)A(0,4),點(diǎn)B(3,0),雙曲線y=與直線BD交于點(diǎn)D、點(diǎn)E.
(1)求k的值;
(2)求直線BD的解析式;
(3)求△CDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰梯形ABCD中,AB∥DC,AD=BC=CD,點(diǎn)E為AB上一點(diǎn),連結(jié)CE,請(qǐng)?zhí)砑右粋(gè)你認(rèn)為合適的條件 ,使四邊形AECD為菱形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com