【題目】如圖所示,CD是⊙O的弦,AB是⊙O的直徑,且CD//AB,連接AC,AD,OD,其中AC=CD,過點B的切線交CD的延長線于E.
(1)求證:DA平分∠CDO;
(2)若AB=12,求圖中陰影部分圖形的周長(結(jié)果精確到1,參考數(shù)據(jù):π=3.1, =1.4, =1.7).
【答案】
(1)證明:∵CD//AB,
∴∠CDA=∠DAO,
∵OA=OD,
∴∠ADO=∠DAO,
∴∠CDA=∠ADO,
∴DA平分∠CDO
(2)解:∵AC=CD,
∴∠CDA=∠CAD,
∵∠CDA=∠ADO,
∴∠CAD=∠ADO,
∴AC//OD,
又∵AC=CD,CD//AB,
∴四邊形AODC是菱形,
∴OA=AC,
連接OC,∵AB=12,
∴OA=AC=OC=6,
∴∠CAO=60°,
作CF⊥AB于點F,
∴CF=ACsin60°=6× =3 ,AF=ACcos60°=3,
∵EB⊥AB,CD//AB,
則BE=CF=3 ,DE=AB﹣AF﹣CD=12﹣3﹣6=3,
∵∠CAO=60°,AC//DO,
∴∠CAO=∠DOB=60°,
∴ ,
∴圖中陰影部分圖形的周長是: =2π+3 +3=2×3.1+3×1.7+3≈14.
【解析】(1)要求DA平分∠CDO,只要求得∠CDA=∠ADO成立即可,根據(jù)題目中的條件,可以得到∠CDA=∠ADO,從而可以解答本題;(2)圖中陰影部分圖形的周長是BE+DE+ 的長,根據(jù)(1)中的結(jié)論和題目中的條件,可以求得BE+DE+ 的長,從而可以解答本題.
【考點精析】通過靈活運用切線的性質(zhì)定理和弧長計算公式,掌握切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑;若設(shè)⊙O半徑為R,n°的圓心角所對的弧長為l,則l=nπr/180;注意:在應(yīng)用弧長公式進(jìn)行計算時,要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在坐標(biāo)系中放置一菱形OABC,已知∠ABC=60°,點B在y軸上,OA=1,先將菱形OABC沿x軸的正方向無滑動翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2017次,點B的落點依次為B1 , B2 , B3 , …,則B2017的坐標(biāo)為( )
A.(1345,0)
B.(1345.5, )
C.(1345, )
D.(1345.5,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一般情況下不成立,但有些數(shù)可以使得它成立,例如: .我們稱使得成立的一對數(shù), 為“相伴數(shù)對”,記為.
(1)若是“相伴數(shù)對”,求的值;
(2)寫出一個“相伴數(shù)對” ,其中且;
(3)若是“相伴數(shù)對”,求代數(shù)式的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場為了吸引顧客,設(shè)立了可以自由轉(zhuǎn)動的轉(zhuǎn)盤(如圖,轉(zhuǎn)盤被均勻分為20份),并規(guī)定:顧客每購買200元的商品,就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機(jī)會.如果轉(zhuǎn)盤停止后,指針正好對準(zhǔn)紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得200元、100元、50元的購物券,憑購物券可以在該商場繼續(xù)購物.如果顧客不愿意轉(zhuǎn)轉(zhuǎn)盤,那么可以直接獲得購物券30元.
(1)求轉(zhuǎn)動一次轉(zhuǎn)盤獲得購物券的概率;
(2)轉(zhuǎn)轉(zhuǎn)盤和直接獲得購物券,你認(rèn)為哪種方式對顧客更合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人進(jìn)行摸排游戲,現(xiàn)有三張形狀大小完全相同的牌,正面分別標(biāo)有數(shù)字2,3,5,將三張牌背面朝上,洗勻后放在桌子上.
(1)甲從中隨機(jī)抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機(jī)抽取一張.請用列表法或畫樹狀圖的方法寫出所有可能的結(jié)果;
(2)若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;若抽取的數(shù)字和為5的倍數(shù),則乙獲勝.這個游戲公平嗎?請用概率的知識加以解釋.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第二、四象限內(nèi)的A,B兩點,與x軸交于點C,與y軸交于點D,點B的坐標(biāo)是(m,﹣4),連接AO,AO=5,sin∠AOC= .
(1)求反比例函數(shù)的解析式;
(2)連接OB,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國主要銀行的商標(biāo)設(shè)計基本上都融入了中國古代錢幣的圖案,下圖中我國四大銀行的商標(biāo)圖案中既是軸對稱圖形又是中心對稱圖形的個數(shù)有( )
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,AD是△ABC的角平分線,點O為AB的中點,連接DO并延長到點E,使OE=OD,連接AE,BE.
(1)求證:四邊形AEBD是矩形;
(2)當(dāng)△ABC滿足什么條件時,矩形AEBD是正方形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點是線段上一定點,,、兩點分別從、出發(fā)以、的速度沿直線向左運動,運動方向如箭頭所示(在線段上,在線段上)
若,當(dāng)點、運動了,此時________,________;(直接填空)
當(dāng)點、運動了,求的值.
若點、運動時,總有,則________(填空)
在的條件下,是直線上一點,且,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com