分析:(1)根據有理數的混合運算,把除法轉化為乘法,然后逆運用乘法分配律進行計算即可得解;
(2)先根據去括號法則去掉括號,然后利用合并同類項法則進行計算即可得解;
(3)根據一元一次方程的解法,去括號,移項,合并同類項,系數化為1即可得解;
(4)根據一元一次方程的解法,去分母,去括號,移項,合并同類項,系數化為1即可得解.
解答:解:(1)
×(-3)
2-
×6+10÷(-
)
=
×9-
×6+10×(-
)
=
×(9-6-10)
=
×(-7)
=-2;
(2)3(3x
2y-xy
2)-[2(x
2y-5xy
2)-x
2y]
=9x
2y-3xy
2-(2x
2y-10xy
2-x
2y)
=9x
2y-3xy
2-2x
2y+10xy
2+x
2y
=(9-2+1)x
2y+(-3+10)xy
2=8x
2y+7xy
2;
(3)去括號得,1-2x+4=3x-7,
移項得,-2x-3x=-7-1-4,
合并同類項得,-5x=-12,
系數化為1得,x=
;
(4)去分母得,3(1-x)=2(4x-1)-6,
去括號得,3-3x=8x-2-6,
移項得,-3x-8x=-2-6-3,
合并同類項得,-11x=-11,
系數化為1得,x=1.
點評:本題主要考查了解一元一次方程,注意在去分母時,方程兩端同乘各分母的最小公倍數時,不要漏乘沒有分母的項,同時要把分子(如果是一個多項式)作為一個整體加上括號.