【題目】甲、乙兩名隊員參加射擊訓(xùn)練,成績分別被制成下列兩個統(tǒng)計圖:

根據(jù)以上信息,整理分析數(shù)據(jù)如下:

(1)寫出表格中a,b,c的值;

(2)分別運用上表中的四個統(tǒng)計量,簡要分析這兩名隊員的射擊訓(xùn)練成績.若選派其中一名參賽,你認為應(yīng)選哪名隊員?

【答案】 (1)a=7, b=7.5, c=1.2;(2)選甲,方差小或選乙,中位數(shù),眾數(shù)高

【解析】

(1)利用平均數(shù)的計算公式直接計算平均分即可;將乙的成績從小到大重新排列,用中位數(shù)的定義直接寫出中位數(shù)即可;根據(jù)甲的平均數(shù)利用方差的公式計算即可;

(2)結(jié)合平均數(shù)和中位數(shù)、眾數(shù)、方差三方面的特點進行分析,若選派一名學(xué)生參加比賽的話,可選擇乙參賽.

(1)解:(1)甲的平均成績(環(huán)),

甲的方差為:

∵乙射擊的成績從小到大從新排列為:3、4、6、7、7、8、8、8、9、10,

∴乙射擊成績的中位數(shù)(環(huán)),

故答案為:,;

(2)從平均成績看甲、乙二人的成績相等均為7環(huán),從中位數(shù)看甲射中7環(huán)以上的次數(shù)小于乙,從眾數(shù)看甲射中7環(huán)的次數(shù)最多而乙射中8環(huán)的次數(shù)最多,從方差看甲的成績比乙的成績穩(wěn)定,綜合以上各因素,若選派一名學(xué)生參加比賽的話,可選擇乙參賽,因為乙獲得高分的可能更大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下面的內(nèi)容,再解決問題.

例題:若,求的值.

解:∵

,

問題:(1),求的值;

(2)已知的三邊長,滿足,且中最長的邊的長度為,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖①,在銳角ABC中,BDBE三等分∠ABCCDCE三等分∠ACB,請分別寫出∠A和∠D,∠A和∠E的數(shù)量關(guān)系,并選擇其中一個說明理由;

2)如圖②,在銳角ABC中,BDBE三等分∠ABC,CDCE三等分外角∠ACM,請分別寫出∠A和∠D,∠A和∠E的數(shù)量關(guān)系,并選擇其中一個說明理由;

3)如圖③,在銳角ABC中,BDBE三等分外角∠PBC,CDCE三等分外角∠QCB,請分別直接寫出∠A和∠D,∠A和∠E的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在RtABC中,∠BAC=90°,AB=AC,D,E兩點分別AB,AC上,且DEBC,將△ADE繞點A順時針旋轉(zhuǎn),記旋轉(zhuǎn)角為α.

(1)問題發(fā)現(xiàn) 當(dāng)a=0°時,線段BD,CE的數(shù)量關(guān)系是______

(2)拓展探究 當(dāng)a360°時,(1)中的結(jié)論有無變化?請僅就圖2的情形給出證明;

(3)問題解決 設(shè)DE=,BC=3,0°α360°,ADE旋轉(zhuǎn)至A,B,E三點共線時,直接寫出線段BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的坐標(biāo)系中,△ABC的三個頂點的坐標(biāo)分別為A1,2),B4,1),C2,﹣2).

1)請寫出△ABC關(guān)于x軸對稱的點A1,B1C1的坐標(biāo);

2)請在坐標(biāo)系中作出△ABC關(guān)于y軸對稱的△A2B2C2

3)計算△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖△ABC中,延長BCD,∠ABC和∠ACD的平分線相交于P

1)若∠A60°,則∠P   

2)請你用數(shù)學(xué)表達式歸納出∠P與∠A的關(guān)系:   

3)請說明你的結(jié)論(2)正確的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,從下列條件中補充一個條件后,仍不能判定的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形QABC是矩形,ADEF是正方形,點A、Dx軸的正半軸上,點Cy軸的正半軸上,點FAB上,點B、E在反比例函數(shù)y=kx的圖象上,OA=1,OC=6,則正方形ADEF的邊長為( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+4x軸交于點C,與y軸交于點B,拋物線y=ax2+x+c經(jīng)過B、C兩點.

(1)求拋物線的解析式;

(2)如圖,點E是直線BC上方拋物線上的一動點,當(dāng)△BEC面積最大時,請求出點E的坐標(biāo);

(3)在(2)的結(jié)論下,過點Ey軸的平行線交直線BC于點M,連接AM,點Q是拋物線對稱軸上的動點,在拋物線上是否存在點P,使得以P、Q、A、M為頂點的四邊形是平行四邊形?如果存在,請直接寫出點P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案