【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、B在雙曲線y=( x>0)上,BC與x軸交于點(diǎn)D.若點(diǎn)A的坐標(biāo)為(2,4),則點(diǎn)D的坐標(biāo)為( 。
A.( ,0)B.(,0)C.(,0)D.(,0)
【答案】B
【解析】
由矩形OABC的頂點(diǎn)A、B在雙曲線y=( x>0)上,BC與x軸交于點(diǎn)D.若點(diǎn)A的坐標(biāo)為(2,4),利用待定系數(shù)法即可求得反比例函數(shù)與直線OA的解析式,又由OA⊥AB,可得直線AB的系數(shù)為,繼而可求得直線AB的解析式,將直線AB與反比例函數(shù)聯(lián)立,即可求得點(diǎn)B的坐標(biāo),設(shè)直線BD的解析式為y=2x+c,代入求出解析式,再求出直線和x軸的交點(diǎn)坐標(biāo)即可.
∵矩形OABC的頂點(diǎn)A、B在雙曲線y=( x>0)上,點(diǎn)A的坐標(biāo)為(2,4),
∴4=,
解得:k=8,
∴雙曲線的解析式為:y=,直線OA的解析式為:y=2x,
∵OA⊥AB,
∴設(shè)直線AB的解析式為:y=x+b,
∴4=×2+b,
解得:b=5,
∴直線AB的解析式為:y=x+5,
將直線AB與反比例函數(shù)聯(lián)立得出:
,
解得:
或,
∴點(diǎn)B(8,1),
∵四邊形AOCB是矩形,
∴AO∥BD,
∵直線OA的解析式為y=2x,
∴設(shè)直線BD的解析式為y=2x+c,
把B的坐標(biāo)代入得:1=16+c,
解得c=15,
即y=2x15,
當(dāng)y=0時(shí),x=,
即D的坐標(biāo)為(,0),
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與直線y=x交于(1,1)和(3,3)兩點(diǎn),現(xiàn)有以下結(jié)論:①b2﹣4c>0;②3b+c+6=0;③當(dāng)x2+bx+c>時(shí),x>2;④當(dāng)1<x<3時(shí),x2+(b﹣1)x+c<0,其中正確的序號(hào)是( 。
A. ①②④B. ②③④C. ②④D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=mx2+2mx﹣3與x軸交于A(x1,0),B(x2,0)兩點(diǎn),與y軸交于點(diǎn)C,且x2﹣x1=4.
(1)求拋物線的解析式;
(2)求拋物線的對(duì)稱軸上存在一點(diǎn)P,使PA+PC的值最小,求此時(shí)點(diǎn)P的坐標(biāo);
(3)點(diǎn)M是拋物線上的一動(dòng)點(diǎn),且在第三象限.
①當(dāng)M點(diǎn)運(yùn)動(dòng)到何處時(shí),△AMB的面積最大?求出△AMB的最大面積及此時(shí)點(diǎn)M的坐標(biāo).
②當(dāng)M點(diǎn)運(yùn)動(dòng)到何處時(shí),四邊形AMCB的面積最大?求出四邊形AMCB的最大面積及此時(shí)點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,AB為⊙O直徑,AB=12,AD平分∠BAC,交BC于點(diǎn) E,交⊙O于點(diǎn)D,連接BD.
(1)求證:∠BAD=∠CBD;
(2)若∠AEB=125°,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年某市為創(chuàng)評(píng)“全國文明城市”稱號(hào),周末團(tuán)市委組織志愿者進(jìn)行宣傳活動(dòng).班主任梁老師決定從4名女班干部(小悅、小惠、小艷和小倩)中通過抽簽的方式確定2名女生去參加.
抽簽規(guī)則:將4名女班干部姓名分別寫在4張完全相同的卡片正面,把四張卡片背面朝上,洗勻后放在桌面上,梁老師先從中隨機(jī)抽取一張卡片,記下姓名,再從剩余的3張卡片中隨機(jī)抽取第二張,記下姓名.
(1)該班男生“小剛被抽中”是 事件,“小悅被抽中”是 事件(填“不可能”或“必然”或“隨機(jī)”);第一次抽取卡片“小悅被抽中”的概率為 ;
(2)試用畫樹狀圖或列表的方法表示這次抽簽所有可能的結(jié)果,并求出“小惠被抽中”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在圓O中,AB是直徑,點(diǎn)E和點(diǎn)D是圓O上的點(diǎn),且∠EAB=45°,延長AE和BD相交于點(diǎn)C,連接BE和AD交于點(diǎn)F,BD=12,CD=8,則直徑AB的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊CD與Rt△EFG的直角邊EF重合,將正方形ABCD以1cm/s的速度沿FE方向移動(dòng),在移動(dòng)過程中,邊CD始終與邊EF重合(移動(dòng)開始時(shí)點(diǎn)C與點(diǎn)F重合).連接AE,過點(diǎn)C作AE的平行線交直線EG于點(diǎn)H,連接HD.已知正方形ABCD的邊長為1cm,EF=4cm,設(shè)正方形移動(dòng)時(shí)間為x(s),線段EH的長為y(cm),其中0≤x≤2.5.
(1)當(dāng)x=2時(shí),AE的長為 ;
(2)試求出y關(guān)于x的函數(shù)關(guān)系式,并求出△EHD與△ADE的面積之差;
(3)當(dāng)正方形ABCD移動(dòng)時(shí)間x= 時(shí),線段HD所在直線經(jīng)過點(diǎn)B.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a0)的圖象過點(diǎn)(-2,0),對(duì)稱軸為直線x=1.有以下結(jié)論:①abc>0;②8a+c>0;③若A(x1,m),B(x2,m)是拋物線上的兩點(diǎn),當(dāng)x=x1+x2時(shí),y=c;④若方程a(x+2)(4-x)=-2的兩根為x1,x2,且x1<x2,則-2x1<x2<4.
其中結(jié)論正確的有( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對(duì)角線AC和BD相交于點(diǎn)O,O又是正方形A1B1C1O的一個(gè)頂點(diǎn),OA1交AB于點(diǎn)E,OC1交BC于點(diǎn)F.
(1)求證:△AOE≌△BOF;
(2)如果兩個(gè)正方形的邊長都為a,那么正方形A1B1C1O繞O點(diǎn)轉(zhuǎn)動(dòng),兩個(gè)正方形重疊部分的面積等于多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com