已知拋物線y=-x2+2kx-
32
k2+2k-2
(k是實(shí)數(shù))與x軸有交點(diǎn),將此拋物線向左平移1個(gè)單位,再向上平移4個(gè)單位,得到新的拋物線E,設(shè)拋物線E與x軸的交點(diǎn)為B,C,如圖.
(1)求拋物線E所對(duì)應(yīng)的函數(shù)關(guān)系式,并求出頂點(diǎn)A的坐標(biāo);
(2)連接AB,把AB所在的直線平移,使它經(jīng)過點(diǎn)C,得到直線l,點(diǎn)P是l上一動(dòng)點(diǎn)(與點(diǎn)C不重合).設(shè)以點(diǎn)A,B,C,P為頂點(diǎn)的四邊形面積為S,點(diǎn)P的橫坐標(biāo)為t,當(dāng)0<S≤16時(shí),求t的取值范圍;
(3)點(diǎn)Q是直線l上的另一個(gè)動(dòng)點(diǎn),以點(diǎn)Q為圓心,R為半徑作圓Q,當(dāng)R取何值時(shí),圓Q與直線AB相切?相交?相離?直接給出結(jié)果.
分析:(1)首先根據(jù)拋物線與x軸有交點(diǎn),則判別式△≥0,據(jù)此即可求得k的值,函數(shù)的解析式即可求得,然后根據(jù)將此拋物線向左平移1個(gè)單位,再向上平移4個(gè)單位,得到新的拋物線E,即可求得E的解析式以及頂點(diǎn)坐標(biāo);
(2)首先求得B、C的坐標(biāo),然后利用待定系數(shù)法即可求得AB,l的解析式,分P在x軸下方和上方,兩種情況利用P的橫坐標(biāo)t表示出四邊形的面積,再根據(jù)0<S≤16即可得到關(guān)于t的不等式,求得t的范圍;
(3)過點(diǎn)C作CH⊥AB,H為垂足,利用三角形的面積公式求得CH的長(zhǎng),然后利用直線與圓的位置關(guān)系的判定方法,即可寫出結(jié)果.
解答:解:(1)拋物線y=-x2+2kx-
3
2
k2+2k-2(k是實(shí)數(shù))與x軸有交點(diǎn),
則判別式△=(2k)2+4(-
3
2
k2+2k-2)=-(k-2)2≥0,
則k=2,
因而拋物線的解析式是:y=-x2+4x-4,
將此拋物線向左平移1個(gè)單位,再向上平移4個(gè)單位得到的拋物線是:y=-(x+1)2+4(x+1)-4+4,
即:y=-x2+2x+3
即y=-(x-1)2+4,
∴頂點(diǎn)A坐標(biāo)為(1,4);

(2)令y=0,得-x2+2x+3=0所以B(-1,0),C(3,0)
設(shè)直線AB的函數(shù)關(guān)系式為y=kx+b、
∵A(0,4),B(-1,0)∴
k+b=4
-1k+b=0
解得
k=2
b=2

∴y=2x+2
∵直線l∥AB且過點(diǎn)C(3,0),∴直線l的函數(shù)關(guān)系式為y=2x-6,
∵點(diǎn)P是l上一動(dòng)點(diǎn)且橫坐標(biāo)為t,∴點(diǎn)P坐標(biāo)為(t,2t-6)
當(dāng)P在x軸下方時(shí)(t<3),S=S△ABC+S△BCP=
1
2
×4×4+
1
2
×4×|2t-6|=20-4t.
∵0<S≤16,∴0<20-4t≤16,∴1≤t<5、又t<3,∴1≤t<3
當(dāng)P在x軸上方時(shí)(t>3),
作PM⊥x軸于M,設(shè)對(duì)稱軸與x軸交點(diǎn)為N. 則
S=S梯形ANMP+S△ANB+S△PMC
=
1
2
[4+(2t-6)]•(t-1)+
1
2
×
2×4-
1
2
(t-3)(2t-6)
=4t-4
另法:∵直線l∥AB,根據(jù)等底等高的面積相等進(jìn)行轉(zhuǎn)化
S=S△ABC+S△APC=S△ABC+S△BPC=S△ABC+S△PBC=
1
2
×4×4+
1
2
×4×(2t-6)=4t-4
∵0<S≤16,∴0<4t-4≤16,
∴1<t≤5.
又∵t>3,
∴3<t≤5.
∴t的取值范圍是1≤t<3或3<t≤5;

(3)AB=2
5
,過點(diǎn)C作CH⊥AB,H為垂足,S△ABC=
1
2
×4×4=
1
2
×AB×CH
所以CH=
8
5
5
,
因?yàn)槠叫芯間距離處處相等,所以點(diǎn)Q到直線AB的距離等于
8
5
5

所以當(dāng)R=
8
5
5
時(shí)相切,R
8
5
5
時(shí)相交,R<
8
5
5
時(shí)相離.
點(diǎn)評(píng):此題考查了待定系數(shù)法求拋物線解析式以及直線與圓的位置關(guān)系的判定,并且用到了分類討論的數(shù)學(xué)思想,難點(diǎn)在于考慮問題要全面,做到不重不漏.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2-8x+c的頂點(diǎn)在x軸上,則c等于( 。
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2+(1-2a)x+a2(a≠0)與x軸交于兩點(diǎn)A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范圍,并證明A、B兩點(diǎn)都在原點(diǎn)O的左側(cè);
(2)若拋物線與y軸交于點(diǎn)C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=-x2+bx+c與x軸負(fù)半軸交于點(diǎn)A,與y軸正半軸交于點(diǎn)B,且OA=OB.
精英家教網(wǎng)(1)求b+c的值;
(2)若點(diǎn)C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;
(3)在(2)的條件下,作∠OBC的角平分線,與拋物線交于點(diǎn)P,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•虹口區(qū)一模)如圖,在平面直角坐標(biāo)系xOy中,已知拋物線y=x2+bx+c經(jīng)過A(0,3),B(1,0)兩點(diǎn),頂點(diǎn)為M.
(1)求b、c的值;
(2)將△OAB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后,點(diǎn)A落到點(diǎn)C的位置,該拋物線沿y軸上下平移后經(jīng)過點(diǎn)C,求平移后所得拋物線的表達(dá)式;
(3)設(shè)(2)中平移后所得的拋物線與y軸的交點(diǎn)為A1,頂點(diǎn)為M1,若點(diǎn)P在平移后的拋物線上,且滿足△PMM1的面積是△PAA1面積的3倍,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黔南州)已知拋物線y=x2-x-1與x軸的交點(diǎn)為(m,0),則代數(shù)式m2-m+2011的值為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案