【題目】如圖,△ABC中,AB=AC,AD是△ABC的角平分線,點(diǎn)O為AB的中點(diǎn),連接DO并延長(zhǎng)到點(diǎn)E,使OE=OD,連接AE,BE.

(1)求證:四邊形AEBD是矩形;

(2)當(dāng)△ABC滿足什么條件時(shí),矩形AEBD是正方形?并說(shuō)明理由.

【答案】(1)證明見(jiàn)解析(2)當(dāng)∠BAC=90°時(shí),矩形AEBD是正方形

【解析】試題分析:(1)利用平行四邊形的判定首先得出四邊形AEBD是平行四邊形,進(jìn)而由等腰三角形的性質(zhì)得出∠ADB=90°,即可得出答案;

2)利用等腰直角三角形的性質(zhì)得出AD=BD=CD,進(jìn)而利用正方形的判定得出即可.

1)證明:點(diǎn)OAB的中點(diǎn),連接DO并延長(zhǎng)到點(diǎn)E,使OE=OD,

四邊形AEBD是平行四邊形,

∵AB=AC,AD∠BAC的角平分線,

∴AD⊥BC,

∴∠ADB=90°

平行四邊形AEBD是矩形;

2)當(dāng)∠BAC=90°時(shí),

理由:∵∠BAC=90°,AB=AC,AD∠BAC的角平分線,

∴AD=BD=CD,

由(1)得四邊形AEBD是矩形,

矩形AEBD是正方形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)A、B兩種產(chǎn)品共50件,其生產(chǎn)成本與利潤(rùn)如下表:


A種產(chǎn)品

B種產(chǎn)品

成本 (萬(wàn)元/件)

0.6

0.9

利潤(rùn) (萬(wàn)元/件)

0.2

0.4

若該工廠計(jì)劃投入資金不超過(guò)40萬(wàn)元,且希望獲利超過(guò)16萬(wàn)元,問(wèn)工廠有哪幾種生產(chǎn)方案?哪種生產(chǎn)方案獲利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校九年級(jí)(1)班全體學(xué)生2016年初中畢業(yè)體育考試的成績(jī)統(tǒng)計(jì)如表:

成績(jī)(分)

35

39

42

44

45

48

50

人數(shù)(人)

2

5

6

6

8

7

6

根據(jù)表中的信息判斷,下列結(jié)論中錯(cuò)誤的是( 。
A.該班一共有40名同學(xué)
B.該班學(xué)生這次考試成績(jī)的眾數(shù)是45分
C.該班學(xué)生這次考試成績(jī)的中位數(shù)是45分
D.該班學(xué)生這次考試成績(jī)的平均數(shù)是45分

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以直角三角形AOC的直角頂點(diǎn)O為原點(diǎn),以OCOA所在直線為x軸和y軸建立平面直角坐標(biāo)系,點(diǎn),滿足

C點(diǎn)的坐標(biāo)為______;A點(diǎn)的坐標(biāo)為______.

已知坐標(biāo)軸上有兩動(dòng)點(diǎn)P、Q同時(shí)出發(fā),P點(diǎn)從C點(diǎn)出發(fā)沿x軸負(fù)方向以1個(gè)單位長(zhǎng)度每秒的速度勻速移動(dòng),Q點(diǎn)從O點(diǎn)出發(fā)以2個(gè)單位長(zhǎng)度每秒的速度沿y軸正方向移動(dòng),點(diǎn)Q到達(dá)A點(diǎn)整個(gè)運(yùn)動(dòng)隨之結(jié)束的中點(diǎn)D的坐標(biāo)是,設(shè)運(yùn)動(dòng)時(shí)間為問(wèn):是否存在這樣的t,使?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.

點(diǎn)F是線段AC上一點(diǎn),滿足,點(diǎn)G是第二象限中一點(diǎn),連OG,使得點(diǎn)E是線段OA上一動(dòng)點(diǎn),連CEOF于點(diǎn)H,當(dāng)點(diǎn)E在線段OA上運(yùn)動(dòng)的過(guò)程中,的值是否會(huì)發(fā)生變化?若不變,請(qǐng)求出它的值;若變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形EFGH內(nèi)接于△ABC,且邊FG落在BC上,若AD⊥BC,BC=3,AD=2,EF= EH,那么EH的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,分別延長(zhǎng)OAOC到點(diǎn)E,F,使AE=CF,依次連接BF,D,E各點(diǎn).

1)求證:BAE≌△BCF;

2)若∠ABC=40°,則當(dāng)∠EBA=  時(shí),四邊形BFDE是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC≌△ABD,點(diǎn)E在邊AB上,CE∥BD,連接DE

求證:1∠CEB=∠CBE;

2)四邊形BCED是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知任意三角形的三邊長(zhǎng),如何求三角形面積?
古希臘的幾何學(xué)家海倫解決了這個(gè)問(wèn)題,在他的著作《度量論》一書(shū)中給出了計(jì)算公式﹣﹣海倫公式S= (其中a,b,c是三角形的三邊長(zhǎng),p= ,S為三角形的面積),并給出了證明
例如:在△ABC中,a=3,b=4,c=5,那么它的面積可以這樣計(jì)算:
∵a=3,b=4,c=5
∴p= =6
∴S= = =6
事實(shí)上,對(duì)于已知三角形的三邊長(zhǎng)求三角形面積的問(wèn)題,還可用我國(guó)南宋時(shí)期數(shù)學(xué)家秦九韶提出的秦九韶公式等方法解決.
如圖,在△ABC中,BC=5,AC=6,AB=9

(1)用海倫公式求△ABC的面積;
(2)求△ABC的內(nèi)切圓半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,D是BC的中點(diǎn),E是AD的中點(diǎn),過(guò)點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于點(diǎn)F.

(1)求證:△AEF≌△DEB;

(2)求證:四邊形ADCF是菱形;

(3)若AC=4,AB=5,求菱形ADCF的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案