AB是⊙O的直徑,點D在AB的延長線上,DC切⊙O于點C,若∠BAC=25°,則∠ADC等于( 。
分析:連接OC,根據(jù)圓周角定理求出∠COB,根據(jù)切線性質(zhì)得出∠OCD=90°,根據(jù)三角形內(nèi)角和定理求出即可.
解答:解:如圖,連接OC,
∵DC切⊙O于C,
∴∠OCD=90°,
∵弧BC對的圓周角是∠A,對的圓心角是∠COB,
∴∠COB=2∠A=50°,
∴∠D=180°-∠DCO-∠COB=40°,
故選:C.
點評:本題考查了圓周角定理,三角形內(nèi)角和定理,切線的性質(zhì)的應(yīng)用,主要考查了推理能力.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AB是⊙O的直徑,點D是
AC
的中點,過D點作DE⊥BC交BC于E,交BA于M;
(1)求證:ED是⊙O的切線;
(2)連接AC交BD于F,若AF=5,CF=3,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,AB是⊙O的直徑,點C在⊙O上,△ABC的外角平分線BD交⊙O于D,DE與⊙O相切,交CB的延長線于E.
(1)判斷直線AC和DE是否平行,并說明理由;
(2)若∠A=30°,BE=1cm,分別求線段DE和
BD
的長(直接寫出最后結(jié)果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•淮北模擬)如圖,已知AB是⊙O的直徑,點C、D在⊙O上,且AB=10,AC=8.
(1)如果OE⊥AC,垂足為E,求OE的長;
(2)求tan∠ADC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AB是⊙O的直徑,點C在⊙O的切線BF上,過C作直線CE⊥BF,交⊙O于點D、點E,連接AE、
AD和BD.
(1)請找出一對相似三角形,并證明你的結(jié)論;
(2)若CD=1,AB=5,求tan∠ADE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知AB是⊙O的直徑,點C在上半圓上,點M是弧AC的中點.弦AC、BM相交于P,則圖中與∠BPC相等的角有
2
2
個(不包括∠BPC)

查看答案和解析>>

同步練習冊答案