【題目】已知拋物線與直線有兩個(gè)不同的交點(diǎn).下列結(jié)論:①;②當(dāng)時(shí),有最小值;③方程有兩個(gè)不等實(shí)根;④若連接這兩個(gè)交點(diǎn)與拋物線的頂點(diǎn),恰好是一個(gè)等腰直角三角形,則;其中正確的結(jié)論的個(gè)數(shù)是( )
A.4B.3C.2D.1
【答案】B
【解析】
根據(jù)“拋物線與直線有兩個(gè)不同的交點(diǎn)”即可判斷①③;根據(jù)拋物線的對(duì)稱軸為直線x=1即可判斷②;根據(jù)等腰直角三角形的性質(zhì),用c表達(dá)出兩個(gè)交點(diǎn),代入拋物線解析式計(jì)算即可判斷④.
解:∵拋物線與直線有兩個(gè)不同的交點(diǎn),
∴有兩個(gè)不相等的實(shí)數(shù)根,即有兩個(gè)不相等的實(shí)數(shù)根,故③正確,
∴,解得:,故①正確;
∵拋物線的對(duì)稱軸為直線x=1,且拋物線開(kāi)口向上,
∴當(dāng)x=1時(shí),為最小值,故②正確;
若連接這兩個(gè)交點(diǎn)與拋物線的頂點(diǎn),恰好是一個(gè)等腰直角三角形,
則頂點(diǎn)(1,c-2)到直線y=2的距離等于兩交點(diǎn)距離的一半,
∵頂點(diǎn)(1,c-2)到直線y=2的距離為2-(c-2)=4-c,
∴兩交點(diǎn)的橫坐標(biāo)分別為1-(4-c)=c-3與1+(4-c)=5-c
∴兩交點(diǎn)坐標(biāo)為(c-3,2)與(5-c,2),
將(c-3,2)代入中得:
解得:或
∵,
∴,故④錯(cuò)誤,
∴正確的有①②③,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某批發(fā)部某一玩具價(jià)格如圖所示,現(xiàn)有甲、乙兩個(gè)商店,計(jì)劃在“六一”兒童節(jié)前到該批發(fā)部購(gòu)買此類玩具,兩商店所需玩具總數(shù)為120個(gè),乙商店所需數(shù)量不超過(guò)50個(gè),設(shè)甲商店購(gòu)買個(gè),如果甲、乙兩商店分別購(gòu)買玩具,兩商店需付款總和為元.
(1)求關(guān)于的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)若甲商店購(gòu)買不超過(guò)100個(gè),請(qǐng)說(shuō)明甲、乙兩商店聯(lián)合購(gòu)買比分別購(gòu)買最多可節(jié)約多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知B港口位于A觀測(cè)點(diǎn)北偏東45°方向,且其到A觀測(cè)點(diǎn)正北風(fēng)向的距離BM的長(zhǎng)為10km,一艘貨輪從B港口沿如圖所示的BC方向航行4km到達(dá)C處,測(cè)得C處位于A觀測(cè)點(diǎn)北偏東75°方向,則此時(shí)貨輪與A觀測(cè)點(diǎn)之間的距離AC的長(zhǎng)為( )km.
A.8 B.9 C.6 D.7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一個(gè)邊長(zhǎng)為4的正方形分割成如圖所示的9部分,其中,,,全等,,,,也全等,中間小正方形的面積與面積相等,且是以為底的等腰三角形,則的面積為( )
A.2B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是銳角的外接圓,是的切線,切點(diǎn)為,,連結(jié)交于,的平分線交于,連結(jié).下列結(jié)論:①平分;②連接,點(diǎn)為的外心;③;④若點(diǎn),分別是和上的動(dòng)點(diǎn),則的最小值是.其中一定正確的是__________(把你認(rèn)為正確結(jié)論的序號(hào)都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線 (為常數(shù))與軸交于點(diǎn)和與軸交于點(diǎn),點(diǎn)為拋物線頂點(diǎn).
(Ⅰ)當(dāng)時(shí),求點(diǎn),點(diǎn)的坐標(biāo);
(Ⅱ)①若頂點(diǎn)在直線上時(shí),用含有的代數(shù)式表示;
②在①的前提下,當(dāng)點(diǎn)的位置最高時(shí),求拋物線的解析式;
(Ⅲ)若,當(dāng)滿足值最小時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是的函數(shù),如表是與的幾組對(duì)應(yīng)值.
… | ﹣5 | ﹣4 | ﹣3 | ﹣2 | 0 | 1 | 2 | 3 | 4 | 5 | … | |
… | 1.969 | 1.938 | 1.875 | 1.75 | 1 | 0 | ﹣2 | ﹣1.5 | 0 | 2.5 | … |
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),利用上述表格所反映出的與之間的變化規(guī)律,對(duì)該函數(shù)的圖象與性質(zhì)進(jìn)行了探究.
下面是小明的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(2)根據(jù)畫出的函數(shù)圖象,寫出:
①對(duì)應(yīng)的函數(shù)值約為 ;
②該函數(shù)的一條性質(zhì): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過(guò)O、A(4,0)、B(5,5)三點(diǎn),直線l交拋物線于點(diǎn)B,交y軸于點(diǎn)C(0,﹣4).點(diǎn)P是拋物線上一個(gè)動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)P關(guān)于直線OB的對(duì)稱點(diǎn)恰好落在直線l上,求點(diǎn)P的坐標(biāo);
(3)M是線段OB上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M作直線MN⊥x軸,交拋物線于點(diǎn)N.當(dāng)以M、N、B為頂點(diǎn)的三角形與△OBC相似時(shí),直接寫出點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AC為⊙O的直徑,D為的中點(diǎn),過(guò)點(diǎn)D作DE∥AC,交BC的延長(zhǎng)線于點(diǎn)E.
(1)判斷DE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若CE=,AB=6,求⊙O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com