【題目】如圖,矩形ABCD中,對角線AC的垂直平分線交AD、BC于點E、F,AC與EF交于點O,連結AF、CE.
(1)求證:四邊形AFCE是菱形;
(2)若AB=3,AD=4,求菱形AFCE的邊長.
【答案】(1)證明見解析;(2).
【解析】
試題分析:(1)由矩形的性質得出AD∥BC,∠EAO=∠FCO,證明△AEO≌△CFO,得出AE=CF,證出四邊形AFCE是平行四邊形,再由對角線AC⊥EF,即可得出結論;
(2)設AF=CF=x,則BF=4-x,在Rt△ABF中,根據(jù)勾股定理得出方程,解方程即可.
試題解析:(1)證明:∵四邊形ABCD是矩形,
∴AD∥BC,AD=BC,
∴∠EAO=∠FCO,
∵EF是AC的垂直平分線,
∴AO=CO,∠EOA=∠FOC=90°,
在△AEO和△CFO中,
,
∴△AEO≌△CFO(ASA),
∴AE=CF,
∴四邊形AFCE是平行四邊形,
又∵AC⊥EF,
∴四邊形AFCE是菱形;
(2)解:∵四邊形AFCE是菱形,
∴AF=CF,
設AF=CF=x,則BF=4-x,
在Rt△ABF中,AF2=AB2+BF2,
即x2=32+(4-x)2,
解得 x=,
∴菱形AFCE的邊長為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.
其中正確結論的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,△ABC在平面直角坐標系中的位置如圖所示(圖中每個小方格邊長均為1個單位長度).
(1)求△ABC的面積.
(2)△ABC中任意一點P(x0,y0)經(jīng)平移后對應點為P1(x0+3,y0﹣4),將△ABC作同樣的平移得到△A1B1C1,寫出A1、B1、C1的坐標.A1 ,B1 ,C1 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩直線AB,CD相交于點O,已知OE平分∠BOD,且∠AOC:∠AOD=3:7,
(1)求∠DOE的度數(shù);
(2)若OF⊥OE,求∠COF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,E為弦AC的延長線上一點,DE與⊙O相切于點D,且DE⊥AC,連結OD,若AB=10,AC=6,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC中,D為AB邊上任意一點,DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α,
(1)如圖1所示,當α=60°時,求證:△DCE是等邊三角形;
(2)如圖2所示,當α=45°時,求證:=;
(3)如圖3所示,當α為任意銳角時,請直接寫出線段CE與DE的數(shù)量關系:=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在已知的△ABC中,按以下步驟作圖:①分別以B,C為圓心,以大于BC的長為半徑作弧,兩弧相交于兩點M,N;②作直線MN交AB于點D,連接CD.若CD=AC,∠A=50°,則∠ACB的度數(shù)為( )
A. 90°B. 95°C. 100°D. 105°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AD⊥BC于點D,∠BAD=∠CAD,BE平分∠ABC交AC于E,∠C=42°,若點F為線段BC上的一點,當△EFC為直角三角形時,∠BEF的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點B,F,C,E在同一直線上,AC,DF相交于點G,且△ABC≌△DEF
(1)若△ABC的周長為12cm,AB=3cm,BC=4cm,求DF的長.
(2)若DE⊥BC與點E,∠A=65°,求∠AGF的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com