【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)的圖象的一部分,給出下列命題:①a+b+c=0;②b>2a;③ax2+bx+c=0的兩根分別為﹣3和1;④a﹣2b+c>0,其中正確的命題是( )
A. ①②③B. ①③C. ①④D. ①③④
【答案】B
【解析】
根據(jù)拋物線經(jīng)過(1,0),確定a+b+c的符號;根據(jù)對稱軸方程確定b與2a的關(guān)系;根據(jù)拋物線與x軸的一個交點和對稱軸確定另一個交點,得到ax2+bx+c=0的兩根;根據(jù)a>0,b>0,c<0,b=2a,確定a﹣2b+c的符號.
解:∵y=ax2+bx+c經(jīng)過(1,0),
∴a+b+c=0,①正確;
∵
∴b=2a,②錯誤;
∵y=ax2+bx+c經(jīng)過(1,0),對稱軸為x=﹣1,
∴y=ax2+bx+c與x軸的另一個交點為(﹣3,0),
∴ax2+bx+c=0的兩根分別為﹣3和1,③正確;
∵a>0,b>0,c<0,b=2a,
∴a﹣2b+c=﹣a﹣b+c<0,④錯誤,
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點A、C為半徑是8的圓周上兩動點,點B為的中點,以線段BA、BC為鄰邊作菱形ABCD,頂點D恰在該圓半徑的中點上,則該菱形的邊長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個問題:探究同一坐標(biāo)系中系數(shù)互為倒數(shù)的正、反比例函數(shù)與的圖象性質(zhì)小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對這兩個函數(shù)當(dāng)時的圖象性質(zhì)進(jìn)行了探究設(shè)函數(shù)與圖象的交點為A、下面是小明的探究過程:
(1)如圖所示,若已知A的坐標(biāo)為,則B點的坐標(biāo)為______.
(2)若A的坐標(biāo)為,P點為第一象限內(nèi)雙曲線上不同于點B的任意一點.
①設(shè)直線PA交x軸于點M,直線PB交x軸于點求證:.
證明過程如下:設(shè),直線PA的解析式為.
則
解得
所以,直線PA的解析式為______.
請把上面的解答過程補(bǔ)充完整,并完成剩余的證明.
②當(dāng)P點坐標(biāo)為時,判斷的形狀,并用k表示出的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)為(4,),且與y軸交于點C(0,2),與x軸交于A,B兩點(點A在點B的左邊).
(1)求拋物線的解析式及A,B兩點的坐標(biāo);
(2)在(1)中拋物線的對稱軸l上是否存在一點P,使AP+CP的值最。咳舸嬖,求AP+CP的最小值,若不存在,請說明理由;
(3)在以AB為直徑的⊙M相切于點E,CE交x軸于點D,求直線CE的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,如圖所示,若AF=4,AB=7.
(1)求DE的長度;
(2)試猜想:直線BE與DF有何位置關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖甲,在等邊三角形ABC內(nèi)有一點P,且PA=2,PB=,PC=1,求∠BPC度數(shù)的大小和等邊三角形ABC的邊長.
解題思路是:將△BPC繞點B逆時針旋轉(zhuǎn)60°,如圖乙所示,連接PP′.
(1)△P′PB是 三角形,△PP′A是 三角形,∠BPC= °;
(2)利用△BPC可以求出△ABC的邊長為 .
如圖丙,在正方形ABCD內(nèi)有一點P,且PA=,BP=,PC=1;
(3)求∠BPC度數(shù)的大;
(4)求正方形ABCD的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平行四邊形中, ,垂足為與的延長線相交于,且,連接;
(1)如圖,求證:四邊形是菱形;
(2)如圖,連接,若,在不添加任何輔助線的情況下,直接寫出圖中所有面積等于的面積的鈍角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對角線AC,BD相交于點O,△OAB是等邊三角形.
(1)求證:ABCD為矩形;
(2)若AB=4,求ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線交x軸正半軸于點A、點B,交y軸于點C, 直線y=-x+6經(jīng)過點B、點C;
(1)求拋物線的解析式 ;
(2)點D在x軸下方的拋物線上,連接DB、DC,點D的橫坐標(biāo)為t,△BCD的面積為S,求S與t的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍 ;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com