精英家教網 > 初中數學 > 題目詳情
點P(-2,4)繞原點順時針90°后得到的點Q的坐標是
(4,2)
(4,2)
分析:過P作PC⊥y軸于C,過P′作P′D⊥x軸于D,根據旋轉求出∠POC=∠P′OD,證△PC0≌△P′DO,推出P′D=PC=2,OD=OC=4即可.
解答:解:過P作PC⊥y軸于C,過P′作P′D⊥x軸于D.
∵∠POP′=90°,∠PCO=90°,
∴∠POC+∠P′OC=90°,∠P′OD+∠P′OC=90°,
∴∠POC=∠P′OD,
在△PC0和△ODP′中,
∠PCO=∠P′DO
∠COP=∠P′OD
PO=P′O
,
∴△PC0≌△P′DO(AAS),
∴P′D=PC=2,OD=OC=4,
∴P′的坐標是(4,2).
故答案為:(4,2).
點評:本題主要考查對坐標與圖形變換-旋轉,全等三角形的性質和判定等知識點的理解和掌握,能正確畫出圖形并求出△PC0≌△P′DO是解此題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:閱讀理解

請閱讀下列材料:
問題:如圖1,在菱形ABCD和菱形BEFG中,點A,B,E在同一條直線上,P是線段DF的中點,連接PG,PC.若∠ABC=∠BEF=60°,探究PG與PC的位置關系及
PG
PC
的值.
小聰同學的思路是:延長GP交DC于點H,構造全等三角形,經過推理使問題得到解決.請你參考小聰同學的思路,探究并解決下列問題:
(1)寫出上面問題中線段PG與PC的位置關系及
PG
PC
的值;
(2)將圖1中的菱形BEFG繞點B順時針旋轉,使菱形BEFG的對角線BF恰好與菱形ABCD的邊AB在同一條直線上,原問題中的其他條件不變(如圖2).你在(1)中得到的兩個結論是否發(fā)生變化?寫出你的猜想并加以證明;
(3)若圖1中∠ABC=∠BEF=2α(0°<α<90°),將菱形BEFG繞點B順時針旋轉任意角度,精英家教網原問題中的其他條件不變,請你直接寫出
PG
PC
的值(用含α的式子表示).

查看答案和解析>>

科目:初中數學 來源: 題型:

25、已知:如圖,點C為線段AB上一點,△ACM、△CBN是等邊三角形,可以說明:△ACN≌△MCB,從而得到結論:AN=BM.
現要求:
(1)將△ACM繞C點按逆時針方向旋轉180°,使A點落在CB上.請對照原題圖在下圖中畫出符合要求的圖形(不寫作法,保留作圖痕跡);
(2)在(1)所得到的圖形中,結論“AN=BM”是否還成立?若成立,請給予證明;若不成立,請說明理由;
(3)在(1)所得到的圖形中,設MA的延長線與BN相交于D點,請你判斷△ABD與四邊形MDNC的形狀,并說明你的結論的正確性.

查看答案和解析>>

科目:初中數學 來源: 題型:

23、已知:如圖1,點C為線段AB上一點,△ACM和△CBN都是等邊三角形,AN、BM交于點P,由△BCM≌△NCA,易證結論:①BM=AN.

(1)請寫出除①外的兩個結論:
∠MBC=∠ANC
∠BMC=∠NAC
;
(2)求出圖1中AN和BM相交所得最大角的度數
120°
;
(3)將△ACM繞C點按順時針方向旋轉180°,使A點落在BC上,請對照原題圖形在圖2中畫出符合要求的圖形(不寫作法,保留痕跡);
(4)探究圖2中AN和BM相交所得的最大角的度數有無變化
不變
(填變化或不變);
(5)在(3)所得到的圖形2中,請?zhí)骄俊癆N=BM”這一結論是否成立,若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

17、如圖(1)已知在△ABC中,AB=AC,P是△ABC內任意一點將AP繞點A順時針旋轉到AQ,使∠QAP=∠BAC,連接BQ、CP,則BQ=CP,請證明;
若將點P移到等腰ABC之外,原題中其它條件不變,上面的結論是否成立?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

請閱讀下列材料:
問題:如圖1,在正方形ABCD和正方形CEFG中,點B、C、E在同一條直線上,M是線段AF的中點,連接DM,MG.探究線段DM與MG數量與位置有何關系.

小聰同學的思路是:延長DM交GF于H,構造全等三角形,經過推理使問題得到解決.
請你參考小聰同學的思路,探究并解決下列問題:
(1)直接寫出上面問題中線段DM與MG數量與位置有何關系
DM=MG且DM⊥MG
DM=MG且DM⊥MG
;
(2)將圖1中的正方形CEFG繞點C順時針旋轉,使正方形CEFG對角線CF恰好與正方形ABCD的邊BC在同一條直線上,原問題中的其他條件不變(如圖2).你在(1)中得到的兩個結論是否發(fā)生變化?寫出你的猜想并加以證明.
(3)如圖3,將正方形CEFG繞點C順時針旋轉任意角度,原問題中的其他條件不變,寫出你的猜想.

查看答案和解析>>

同步練習冊答案