如圖,已知P是正方形ABCD對角線BD上一點,且BP=BC,則∠ACP度數(shù)是______度.
∵ABCD是正方形,
∴∠DBC=∠BCA=45°,
∵BP=BC,
∴∠BCP=∠BPC=
1
2
(180°-45°)=67.5°,
∴∠ACP度數(shù)是67.5°-45°=22.5°.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,AE是角平分線,AD是△ABC外角∠CAG的平分線,CF⊥AD于F.
(1)試說明四邊形AECF為矩形;
(2)當△ABC滿足什么條件時,四邊形AECF是一個正方形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

點E為正方形ABCD的對角線上一點,連接DE,BE并延長交AD于點F,DE⊥EG交BC于G,下列結論:
①△BEC≌△DEC;②∠BED=120°時,EF平分∠AED;③EG=ED;④BG=
2
AE;⑤當點G為BC的中點時,DF=2AF.
其中正確的有:______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,已知:ABCD是正方形,E是CF上的一點,若DBEF是菱形,則∠EBC等于(  )
A.15°B.22.5°C.30°D.25°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在正方形ABCD的邊BC的延長線上取一點E,使CE=AC,AE交CD于點F.那么,∠ACB=______°,∠E=______°.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在□ABCD中,AC、BD交于點O,過點O作直線EF、GH,分別交平行四邊形的四條邊于E、G、F、H四點,連接EG、GF、FH、HE.

(1)如圖①,試判斷四邊形EGFH的形狀,并說明理由;
(2)如圖②,當EF⊥GH時,四邊形EGFH的形狀是______;
(3)如圖③,在(2)的條件下,若AC=BD,四邊形EGFH的形狀是______;
(4)如圖④,在(3)的條件下,若AC⊥BD,試判斷四邊形EGFH的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

正方形ABCD中,點O是對角線AC的中點,P是對角線AC上一動點,過點P作PF⊥CD于點F.如圖1,當點P與點O重合時,顯然有DF=CF.
(1)如圖2,若點P在線段AO上(不與點A、O重合),PE⊥PB且PE交CD于點E.
①求證:DF=EF;
②寫出線段PC、PA、CE之間的一個等量關系,并證明你的結論;
(2)若點P在線段OC上(不與點O、C重合),PE⊥PB且PE交直線CD于點E.請完成圖3并判斷(1)中的結論①、②是否分別成立?若不成立,寫出相應的結論.(所寫結論均不必證明)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列判斷正確的a數(shù)是( 。
①一組對邊平行,另一組對邊相等的j邊形是平行j邊形
②j角相等的j邊形是正方形
③對角線互相垂直的平行j邊形是正方形
④每條對角線平分一組對角的矩形是正方形.
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,E是正方形ABCD內(nèi)一點,如果△ABE為等邊三角形,那么∠DCE=______度.

查看答案和解析>>

同步練習冊答案