如圖,A,B,C三點在同一條直線上,∠A=∠C=90°,AB=CD,請?zhí)砑右粋適當?shù)臈l件 AE=CB ,使得△EAB≌△BCD.

考點:

全等三角形的判定.

專題:

開放型.

分析:

可以根據(jù)全等三角形的不同的判定方法添加不同的條件.

解答:

解:∵∠A=∠C=90°,AB=CD,

∴若利用“SAS”,可添加AE=CB,

若利用“HL”,可添加EB=BD,

若利用“ASA”或“AAB”,可添加∠EBD=90°,

若添加∠E=∠DBC,看利用“AAS”證明.

綜上所述,可添加的條件為AE=CB(或EB=BD或∠EBD=90°或∠E=∠DBC等).

故答案為:AE=CB.

點評:

本題主要考查了全等三角形的判定,開放型題目,根據(jù)不同的三角形全等的判定方法可以選擇添加的條件也不相同.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

9、如圖,A、C、E三點在同一條直線上,△DAC和△EBC都是等邊三角形,AE、BD分別與CD、CE交于點M、N,有如下結論:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正確結論的個數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、如圖,A、Q、R三點在一條直線上,S為直線外一點,∠AQS=136°,∠QRS=64°,則∠QSR=( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,A,B,C三點在同一平面內(nèi),從山腳纜車站A測得山頂C的仰角為45°,測得另一纜精英家教網(wǎng)車站B的仰角為30°,AB間纜繩長500米(自然彎曲忽略不計).(
3
≈1.73
,精確到1米)
(1)求纜車站B與纜車站A間的垂直距離;
(2)乘纜車達纜車站B,從纜車站B測得山頂C的仰角為60°,求山頂C與纜車站A間的垂直距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,A、B、C三點在⊙O上,∠BAC=60°,若⊙O的半徑OC為12,則劣弧BC的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,A,O,B三點在同一直線上,OC,OE分別是∠BOD,∠AOD的平分線,OC與OE有什么位置關系?為什么?

查看答案和解析>>

同步練習冊答案