如圖,以?ABCD對角線的交點為坐標原點,以平行于AD邊的直線為x軸,建立平面直角坐標系.若點D的坐標為(3,2),則點B的坐標為


  1. A.
    (-3,-2)
  2. B.
    (2,3)
  3. C.
    (-2,-3)
  4. D.
    (3,2)
A
分析:平行四邊形是中心對稱圖形,點B與點D關于原點對稱,再根據(jù)關于原點對稱的點的坐標特征解題即可.
解答:關于原點對稱的兩個點的坐標,橫縱坐標互為相反數(shù),所以B點的坐標為(-3,-2),故選A.
點評:本題考查平行四邊形的對稱性,平行四邊形是中心對稱圖形,對稱中心是對角線的交點,與坐標系結合在一起,可確定點的坐標.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD內接于⊙O,⊙O的半徑為2,若分別以AB,BC,CD,DA為折痕,將劣弧
AB
,
BC
CD
,
DA
向內對折,則圖中陰影部分的面積為
 
.(結果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•汕頭)如圖,矩形ABCD中,以對角線BD為一邊構造一個矩形BDEF,使得另一邊EF過原矩形的頂點C.
(1)設Rt△CBD的面積為S1,Rt△BFC的面積為S2,Rt△DCE的面積為S3,則S1
=
=
S2+S3(用“>”、“=”、“<”填空);
(2)寫出如圖中的三對相似三角形,并選擇其中一對進行證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•廣陽區(qū)一模)九年級數(shù)學興趣小組近期開展了對運動型問題的探究.小明同學提供了一個這樣的背景:如圖,在?ABCD中,AB=AC=10cm,sin∠ACB=
45
,動點O從A出發(fā)以1cm/s的速度沿AC方向向點C勻速運動,同時線段EF從與線段CB重合的位置出發(fā)以1cm/s的速度沿BA方向向點C勻速運動.在運動過程中,EF交AC于點G,連接OE、OF.設運動時間為ts(0<t<10),請你解決以下問題:
(1)當t為何值時,點O與點G重合?
(2)當點O與點G不重合時,判斷△OEF的形狀,并說明理由.             
(3)當0<t<5時,
    ①在上述運動過程中,五邊形BCEOF的面積是否為定值?如果是,求出五邊形BCEOF的面積;如果不是,請說明理由.
    ②△EOG的面積是否存在最大值?若存在,請求出最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2013•鼓樓區(qū)一模)問題提出:
規(guī)定:四條邊對應相等,四個角對應相等的兩個四邊形全等.
我們借助學習“三角形全等的判定”獲得的經(jīng)驗與方法對“全等四邊形的判定”進行探究.
初步思考:
在兩個四邊形中,我們把“一條邊對應相等”或“一個角對應相等”稱為一個條件.滿足4個條件的兩個四邊形不一定全等,如邊長相等的正方形與菱形就不一定全等.類似地,我們容易知道兩個四邊形全等至少需要5個條件.
深入探究:
小莉所在學習小組進行了研究,她們認為5個條件可分為以下四種類型:
Ⅰ一條邊和四個角對應相等;Ⅱ二條邊和三個角對應相等;
Ⅲ三條邊和二個角對應相等;Ⅳ四條邊和一個角對應相等.
(1)小明認為“Ⅰ一條邊和四個角對應相等”的兩個四邊形不一定全等,請你舉例說明.
(2)小紅認為“Ⅳ四條邊和一個角對應相等”的兩個四邊形全等,請你結合下圖進行證明.
已知:如圖,
四邊形ABCD和四邊形A1B1C1D1中,AB=A1B1,BC=B1C1,CD=C1D1,DA=D1A1,∠B=∠B1
四邊形ABCD和四邊形A1B1C1D1中,AB=A1B1,BC=B1C1,CD=C1D1,DA=D1A1,∠B=∠B1

求證:
四邊形ABCD≌四邊形A1B1C1D1
四邊形ABCD≌四邊形A1B1C1D1

證明:

(3)小剛認為還可以對“Ⅱ二條邊和三個角對應相等”進一步分類,他以四邊形ABCD和四邊形A1B1C1D1為例,分為以下幾類:
①AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1;
②AB=A1B1,AD=A1D1,∠A=∠A1,∠B=∠B1,∠D=∠D1
③AB=A1B1,AD=A1D1,∠B=∠B1,∠C=∠C1,∠D=∠D1;
④AB=A1B1,CD=C1D1,∠A=∠A1,∠B=∠B1,∠C=∠C1
其中能判定四邊形ABCD和四邊形A1B1C1D1全等的是
①②③
①②③
(填序號),概括可得“全等四邊形的判定方法”,這個判定方法是
有一組鄰邊和三個角對應相等的兩個四邊形全等
有一組鄰邊和三個角對應相等的兩個四邊形全等

(4)小亮經(jīng)過思考認為也可以對“Ⅲ三條邊和二個角對應相等”進一步分類,請你仿照小剛的方法先進行分類,再概括得出一個全等四邊形的判定方法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在Word的繪圖中,可以對畫布中的圖形作縮圖,如圖1中正方形ABCD(邊AB水平放置)的邊長為3,將它在“設置繪圖畫布格式→大小→縮放”中,高度設定為75%,寬度設定為50%,就可以得到圖2中的矩形A1B1C1D1,其中A1B1=3×50%=1.5,A1D1=3×75%=2.25.實際上Word的內部是在畫布上建立了一個以水平線與豎直線為坐標軸的平面直角坐標系,然后賦予圖形的每個點一個坐標(x、y),在執(zhí)行縮放時,是將每個點的坐標作變化處理,即由(x、y)變?yōu)椋▁×n%,y×m%),其中n%與m%即為設定寬度與高度的百分比,最后再由所得點的新坐標生成新圖形.
現(xiàn)在畫布上有一個△OMN,其中∠O=90°,MO=NO,且斜邊MN水平放置(如圖3),對它進行縮放,設置高度為150%,寬度為75%得到新圖形為△O1M1N1(如圖4),那么cos∠O1M1N1的值為
 
精英家教網(wǎng)

查看答案和解析>>

同步練習冊答案