27、如圖,在平行四邊形ABCD中.
(1)尺規(guī)作圖(不寫作法,保留作圖痕跡):作∠ABC的平分線BE交AD于E;在線段BC上截取CF=DE;連接EF.
(2)求證:四邊形ABFE是菱形.
分析:(1)①以點(diǎn)B為圓心,以任意長為半徑畫弧,分別交AB、BC于兩點(diǎn),再分別以這兩點(diǎn)為圓心,以任意長為半徑畫弧,兩弧交于一點(diǎn)G,連接BG并延長交AD于點(diǎn)E,則BE即為所求.
②再以點(diǎn)C為圓心,以DE為半徑畫弧交BC于點(diǎn)F,連接EF即可.
(2)有一組鄰邊相等的平行四邊形是菱形.先證四邊形ABFE是平行四邊形;再證AB=AE.即證?ABFE是菱形.
解答:解:
(1)如圖:

(2)證明:∵ABCD是平行四邊形,
∴AD∥BC,AD=BC
又∵DE=CF
∴AD-DE=BC-CF,
即AE=BF
∵AE∥BF
∴四邊形ABFE是平行四邊形,
又∵BE平分∠ABC
∴∠ABE=∠EBF
又∵AD∥BC
∴∠AEB=∠EBF
∴∠ABE=∠AEB
∴AB=AE
∴?ABFE是菱形.
點(diǎn)評:(1)考查了尺規(guī)作圖.
(2)菱形的判別方法是說明一個(gè)四邊形為菱形的理論依據(jù),常用三種方法:
①定義;
②四邊相等;
③對角線互相垂直平分.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點(diǎn)O,則圖中共有
9
個(gè)平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點(diǎn)E,∠ADC的平分線交AB于點(diǎn)F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點(diǎn)M是邊AD上一點(diǎn),且DM:AD=1:3.點(diǎn)E、F分別從A、C同時(shí)出發(fā),以1厘米/秒的速度分別沿AB、CB向點(diǎn)B運(yùn)動(dòng)(當(dāng)點(diǎn)F運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)E隨之停止運(yùn)動(dòng)),EM、CD精英家教網(wǎng)的延長線交于點(diǎn)P,F(xiàn)P交AD于點(diǎn)Q.設(shè)運(yùn)動(dòng)時(shí)間為x秒,線段PC的長為y厘米.
(1)求y與x之間函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)x為何值時(shí),PF⊥AD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
2
,AO=
3
,OB=
5
,則下列結(jié)論中不正確的是( 。
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長為
4cm
4cm

查看答案和解析>>

同步練習(xí)冊答案