如圖,在△ABC中,BC=3,點G是△ABC的重心,如果DG∥BC,那么DG=   
【答案】分析:首先延長BG交AC于點E,取AD的中點F,連接EF,由點G是△ABC的重心,易得BG:BE=2:3,EF是△ABC的中位線,即可求得EF的長,證得△BDG∽△BFE,然后由相似三角形的對應(yīng)邊成比例,求得DG的長.
解答:解:延長BG交AC于點E,取AB的中點F,連接EF,
∵點G是△ABC的重心,
∴AE=CE,BG:BE=2:3,
∴EF是△ABC的中位線,
∴EF∥BC,EF=BC=,
∵DG∥BC,
∴DG∥EF,
∴△BDG∽△BFE,
∴DG:EF=BG:BE=2:3,
∴DG=EF=1.
故答案為:1.
點評:此題考查了相似三角形的判定與性質(zhì)、三角形重心的性質(zhì)以及三角形中位線的性質(zhì).此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案