【題目】如圖,在△ABP中,C是BP邊上一點(diǎn),∠PAC=∠PBA,⊙O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點(diǎn)E.
(1)求證:PA是⊙O的切線(xiàn);
(2)過(guò)點(diǎn)C作CF⊥AD,垂足為點(diǎn)F,延長(zhǎng)CF交AB于點(diǎn)C,若ACAB=12,求AC的長(zhǎng).

【答案】
(1)證明:連接CD,如圖,

∵AD是⊙O的直徑,

∴∠ACD=90°,

∴∠CAD+∠D=90°,

∵∠PAC=∠PBA,

∠D=∠PBA,

∴∠CAD+∠PAC=90°,即∠PAD=90°,

∴PA⊥AD,

∴PA是⊙O的切線(xiàn)


(2)解:∵CF⊥AD,

∴∠ACF+∠CAF=90°,∠CAD+∠D=90°,

∴∠ACF=∠D,

∴∠ACF=∠B,

而∠CAG=∠BAC,

∴△ACG∽△ABC,

∴AC:AB=AG:AC,

∴AC2=AGAB=12,

∴AC=2


【解析】(1)連接CD,如圖,利用圓周角定理得到∠CAD+∠D=90°,再∠D=∠PBA,加上∠PAC=∠PBA,所以∠PAD=90°,然后根據(jù)切線(xiàn)的判定定理即可得到結(jié)論;(2)證明△ACG∽△ABC,再利用相似比得到AC2=AGAB=12,從而得到AC=2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知線(xiàn)段AB4.8cm,點(diǎn)C是線(xiàn)段AB的中點(diǎn),點(diǎn)D是線(xiàn)段CB的中點(diǎn),點(diǎn)E在線(xiàn)段AB上,且CEAC,畫(huà)圖并計(jì)算DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BAC的平分線(xiàn)交△ABC的外接圓于點(diǎn)D,∠ABC的平分線(xiàn)交AD于點(diǎn)E,
(1)求證:DE=DB;
(2)若∠BAC=90°,BD=4,求△ABC外接圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)AB經(jīng)過(guò)x軸上的點(diǎn)M,與反比例函數(shù)y= (x>0)的圖象相交于點(diǎn)A(1,8)和B(m,n),其中m>1,AC⊥x軸于點(diǎn)C,BD⊥y軸于點(diǎn)D,AC與BD交于點(diǎn)P.

(1)求k的值;
(2)若AB=2BM,求△ABD的面積;
(3)若四邊形ABCD為菱形,求直線(xiàn)AB的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C,EF,B在同一直線(xiàn)上,點(diǎn)A,DBC異側(cè),ABCD,AEDF,AD

1)求證:AB=CD;

2)若ABCF,B40°,求D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)l1的函數(shù)關(guān)系式為y=-x1,且l1x軸交于點(diǎn)D,直線(xiàn)l2經(jīng)過(guò)點(diǎn)A2,0),B(-1,3),直線(xiàn)l1l2交于點(diǎn)C

1)求直線(xiàn)l2的函數(shù)關(guān)系式;

2)點(diǎn)C的坐標(biāo)為 ;

3)求△ADC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】反比例函數(shù)y= 的圖象經(jīng)過(guò)點(diǎn)A(﹣1,2),則當(dāng)x>1時(shí),函數(shù)值y的取值范圍是( )
A.y>﹣1
B.﹣1<y<0
C.y<﹣2
D.﹣2<y<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,BC=1,點(diǎn)P1 , M1分別是AB,AC邊的中點(diǎn),點(diǎn)P2 , M2分別是AP1 , AM1的中點(diǎn),點(diǎn)P3 , M3分別是AP2 , AM2的中點(diǎn),按這樣的規(guī)律下去,PnMn的長(zhǎng)為(n為正整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知平行四邊形ABCD,對(duì)角線(xiàn)AC,BD相交于點(diǎn)O,OBC=OCB

(1)求證:平行四邊形ABCD是矩形;

(2)請(qǐng)?zhí)砑右粋(gè)條件使矩形ABCD為正方形.

查看答案和解析>>

同步練習(xí)冊(cè)答案