【題目】不透明的袋子中裝有4個相同的小球,它們除顏色外無其它差別,把它們分別標(biāo)號:1、2、3、4.

(1)隨機(jī)摸出一個小球后,放回并搖勻,再隨機(jī)摸出一個,用列表或畫樹狀圖的方法求出兩次取的球標(biāo)號相同的概率;

(2)隨機(jī)摸出兩個小球,直接寫出兩次取出的球標(biāo)號和為奇數(shù)”的概率.

【答案】(1); (2)

【解析】

1)畫樹狀圖展示所有16種等可能的結(jié)果數(shù),找出兩次取的球標(biāo)號相同的結(jié)果數(shù),然后根據(jù)概率公式求解

2)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出兩次取出的球標(biāo)號和為奇數(shù)的結(jié)果數(shù),然后根據(jù)概率公式求解.

(1)畫樹狀圖為:

共有16種等可能的結(jié)果數(shù),其中兩次取的球標(biāo)號相同的結(jié)果數(shù)為4

所以“兩次取的球標(biāo)號相同”的概率==;

(2)畫樹狀圖為:

共有12種等可能的結(jié)果數(shù),其中兩次取出的球標(biāo)號和為奇數(shù)的結(jié)果數(shù)為8,

所以“兩次取出的球標(biāo)號和為奇數(shù)”的概率==

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)的圖象經(jīng)過三個點(diǎn)A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>0.

(1)當(dāng)y1﹣y2=4時,求m的值;

(2)如圖,過點(diǎn)B、C分別作x軸、y軸的垂線,兩垂線相交于點(diǎn)D,點(diǎn)P在x軸上,若三角形PBD的面積是8,請寫出點(diǎn)P坐標(biāo)(不需要寫解答過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以AB邊為直徑的O經(jīng)過點(diǎn)P,C是O上一點(diǎn),連結(jié)PC交AB于點(diǎn)E,且ACP=60°,PA=PD.

(1)試判斷PD與O的位置關(guān)系,并說明理由;

(2)若點(diǎn)C是弧AB的中點(diǎn),已知AB=4,求CECP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在△ABC中,∠ACB=90°,以AB為直徑作⊙O;過點(diǎn)C作直線CDAB的延長線于點(diǎn)D,且BD=OBCD=CA

1)求證:CD是⊙O的切線.

2)如圖(2),過點(diǎn)CCEAB于點(diǎn)E,若⊙O的半徑為8,∠A=30°,求線段BE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D,E分別在AB,BC上,∠EAD=∠EDA,點(diǎn)F為DE的延長線與AC的延長線的交點(diǎn).

(1)求證:DE=EF;

(2)判斷BD和CF的數(shù)量關(guān)系,并說明理由;

(3)若AB=3,AE=,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于AD兩點(diǎn),并經(jīng)過B點(diǎn),對稱軸交x軸于點(diǎn)C,連接BDBC,已知A點(diǎn)坐標(biāo)是(20),B點(diǎn)的坐標(biāo)是(86

1)求二次函數(shù)的解析式.

2)求該函數(shù)圖象的頂點(diǎn)坐標(biāo)及D點(diǎn)的坐標(biāo).

3)拋物線上有一個動點(diǎn)P,與AD兩點(diǎn)構(gòu)成△ADP,是否存在SADP=SBCD?若存在,直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在.請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知圓柱體的體積不變,當(dāng)它的高h(yuǎn)=12.5cm時,底面積S=20cm2.

(1)求S與h之間的函數(shù)解析式;

(2)畫出函數(shù)圖象;

(3)當(dāng)圓柱體的高為5cm,7cm時,比較底面積S的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A和點(diǎn)B分別在x軸的正半軸和y軸的正半軸上,且OA=6OB=8,點(diǎn)DAB的中點(diǎn).

(1)直接寫出點(diǎn)D的坐標(biāo)及AB的長;

(2)若直角∠NDM繞點(diǎn)D旋轉(zhuǎn),射線DP分別交x軸、y軸于點(diǎn)P、N,射線DMx軸于點(diǎn)M,連接MN

①當(dāng)點(diǎn)P和點(diǎn)N分別在x軸的負(fù)半軸和y軸的正半軸時,若PDM∽△MON,求點(diǎn)N的坐標(biāo);

②在直角∠NDM繞點(diǎn)D旋轉(zhuǎn)的過程中,∠DMN的大小是否會發(fā)生變化?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,點(diǎn)PCA的延長線上,∠CAD=45°.

(1)AB=4,求的長;

(2),AD=AP,求證:PD是⊙O的切線.

查看答案和解析>>

同步練習(xí)冊答案