【題目】如圖,已知△ABC,按如下步驟作圖: ①分別以A,C為圓心,大于 AC的長為半徑畫弧,兩弧交于P,Q兩點;
②作直線PQ,分別交AB,AC于點E,D,連接CE;
③過C作CF∥AB交PQ于點F,連接AF.

(1)求證:△AED≌△CFD;
(2)求證:四邊形AECF是菱形.

【答案】
(1)證明:由作圖知:PQ為線段AC的垂直平分線,

∴AE=CE,AD=CD,

∵CF∥AB

∴∠EAC=∠FCA,∠CFD=∠AED,

在△AED與△CFD中,

∴△AED≌△CFD


(2)解:∵△AED≌△CFD,

∴AE=CF,

∵EF為線段AC的垂直平分線,

∴EC=EA,F(xiàn)C=FA,

∴EC=EA=FC=FA,

∴四邊形AECF為菱形


【解析】(1)由作圖知:PQ為線段AC的垂直平分線,從而得到AE=CE,AD=CD,然后根據(jù)CF∥AB得到∠EAC=∠FCA,∠CFD=∠AED,利用ASA證得兩三角形全等即可;(2)根據(jù)全等得到AE=CF,然后根據(jù)EF為線段AC的垂直平分線,得到EC=EA,F(xiàn)C=FA,從而得到EC=EA=FC=FA,利用四邊相等的四邊形是菱形判定四邊形AECF為菱形.
【考點精析】解答此題的關(guān)鍵在于理解菱形的判定方法的相關(guān)知識,掌握任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知|a+b|+|a-b|-2b=0,在數(shù)軸上給出關(guān)于ab的四種位置關(guān)系如圖所示,則可能成立的有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用配方法解下列方程,其中應(yīng)在方程的左右兩邊同時加上4的是( 。
A. -2x=5
B. +4x=5
C. +2x=5
D.2 -4x=5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在長方形中,AB=4cm,BC=6cm,點中點,如果點在線段上以每秒2cm的速度由點向點運動,同時,點在線段上由點向點運動.設(shè)點運動時間為秒,若某一時刻BPECQP全等,求此時的值及點的運動速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y= x+4與x軸、y軸分別交于A、B兩點,把△A0B繞點A順時針旋轉(zhuǎn)90°后得到△AO′B′,則點B′的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】.. 計算題:

(1)8﹣(﹣10)﹣|﹣2|

(2)2 ﹣3+(﹣3)﹣(+5

(3)﹣24×(﹣ +

(4)﹣49 ×10(簡便運算)

(5)﹣ ÷(+

(6)3×(﹣38 )﹣4×(﹣38 )﹣38

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一副直角三角尺疊放如圖 1 所示,現(xiàn)將 45°的三角尺ADE 固定不動,將含 30°的三角尺 ABC 繞頂點 A 順時針轉(zhuǎn)動(旋轉(zhuǎn)角不超過 180 度),使兩塊三角尺至少有一組邊互相平行.如圖 2:當∠BAD=15°時,BCDE.則∠BAD(0°<BAD<180°)其它所有可能符合條件的度數(shù)為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設(shè)三角形三個內(nèi)角的度數(shù)分別為x,y,z,如果其中一個角的度數(shù)是另一個角的度數(shù)的2倍,那么我們稱數(shù)對(y,z)(yz)x的和諧數(shù)對.例:當x=150°時,對應(yīng)的和諧數(shù)對有一個,它為(10,20);當x=66時,對應(yīng)的和諧數(shù)對有二個,它們?yōu)?/span>(33,81),(38,76).當對應(yīng)的和諧數(shù)對(y,z)有三個時,此時x的取值范圍是____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)計劃把甲種貨物1240噸和乙種貨物880噸用一列貨車運往某地,已知這列貨車掛在A、B兩種不同規(guī)格的貨車廂共40節(jié),使用A型車廂每節(jié)費用為6000元,使用B型車廂每節(jié)費用為8000.

1)設(shè)運送這批貨物的總費用為y萬元,這列貨車掛A型車廂x 節(jié),試定出用車廂節(jié)數(shù)x表示總費用y的公式.

2)如果每節(jié)A型車廂最多可裝甲種貨物35噸和乙種貨物15噸,每節(jié)B型車廂最多可裝甲種貨物25噸和乙種貨物35噸,裝貨時按此要求安排A、B兩種車廂的節(jié)數(shù),那么共有哪幾種安排車廂的方案?

查看答案和解析>>

同步練習冊答案