【題目】許多家庭以燃?xì)庾鳛闊鲲埖娜剂,?jié)約用氣是我們?nèi)粘I钪蟹浅,F(xiàn)實的問題.某款燃?xì)庠钚o位置從0度到90度,燃?xì)怅P(guān)閉時,燃?xì)庠钚o位置為0度,旋鈕角度越大,燃?xì)饬髁吭酱螅細(xì)忾_到最大時,旋鈕角度為90度.為測試燃?xì)庠钚o在不同位置上的燃?xì)庥昧浚谙嗤瑮l件下,選擇在燃?xì)庠钚o的5個不同位置上分別燒開一壺水(當(dāng)旋鈕角度太小時,其火力不能夠?qū)⑺疅_,故選擇旋鈕角度度的范圍是),記錄相關(guān)數(shù)據(jù)得到下表:
旋鈕角度(度) | 20 | 50 | 70 | 80 | 90 |
所用燃?xì)饬浚ㄉ?/span> | 73 | 67 | 83 | 97 | 115 |
(1)請你從所學(xué)習(xí)過的一次函數(shù)、反比例函數(shù)和二次函數(shù)中確定哪種函數(shù)能表示所用燃?xì)饬?/span>升與旋轉(zhuǎn)角度度的變化規(guī)律?說明確定這種函數(shù)而不是其他函數(shù)的理由,并求出它的解析式;
(2)當(dāng)旋轉(zhuǎn)角度為多少時,燒開一壺水所用燃?xì)饬孔钌?最少是多少?/span>
(3)某家庭使用此款燃?xì)庠睿郧傲?xí)慣把燃?xì)忾_到最大,現(xiàn)采用最節(jié)省燃?xì)獾男D(zhuǎn)角度,若該家庭現(xiàn)在每月的平均燃?xì)庥昧繛?/span>13立方米,求現(xiàn)在每月平均能比以前每月節(jié)省燃?xì)舛嗌倭⒎矫祝?/span>
【答案】(1);(2)當(dāng)旋轉(zhuǎn)角度為40°時,燒開一壺水所用燃?xì)饬孔钌,最少?/span>65升;(3)家庭現(xiàn)在每月平均能比以前每月節(jié)省燃?xì)?/span>立方米.
【解析】
(1)先假設(shè)函數(shù)為一次函數(shù),任選兩點求出函數(shù)解析式,再將各點代入驗證;再假設(shè)函數(shù)為二次函數(shù),任選三求出函數(shù)解析式,再將各點代入驗證;
(2)將(1)所求二次函數(shù)解析式,化為頂點式,轉(zhuǎn)化為二次函數(shù)最值的問題,即可解答;
(3)由(2)及表格知,采用最節(jié)省燃?xì)獾男o角度40度比把燃?xì)忾_到最大時燒開一壺水節(jié)約用氣115-65-50,再設(shè)該家庭以前每月平均用氣量為a立方米,據(jù)此解答即可.
解:(1)①假設(shè)變化規(guī)律為一次函數(shù),
將(20,73)和(50,67)代入函數(shù)解析式,
得解得
故 ,
將代入上式,
可得,
所以該變化規(guī)律不是一次函數(shù).
②再假設(shè)變化規(guī)律為反比例函數(shù),
將(20,73)代入函數(shù)解析式,得,
故,
將代入上式,
可得
所以該變化規(guī)律不是反比例函數(shù).
③假設(shè)變化規(guī)律為二次函數(shù)
將(20,73)、(50,67)和(70,83)代入函數(shù)解析式,
得 解得
故
當(dāng)時,,
當(dāng)時,,
則該二次函數(shù)符合所有點,
故該變化規(guī)律為二次函數(shù),解析式為:.
(2)由(1)可知,
所以當(dāng)時,值最小,其最小值為65.
即當(dāng)旋轉(zhuǎn)角度為40°時,燒開一壺水所用燃?xì)饬孔钌,最少?/span>65升.
(3)設(shè)該家庭現(xiàn)在每月平均能比以前每月節(jié)省燃?xì)?/span>立方米,
根據(jù)節(jié)約前后的比例與燃?xì)忾_到最大、最節(jié)約的比例相等,
則,
解得(立方米),
即該家庭現(xiàn)在每月平均能比以前每月節(jié)省燃?xì)?/span>立方米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】合肥三十八中為預(yù)防秋季疾病傳播,對教室進(jìn)行“薰藥消毒”.已知藥物在燃燒釋放過程中,室內(nèi)空氣中每立方米含藥量(毫克)與燃燒時間(分鐘)之間的關(guān)系如圖所示(即圖中線段和雙曲線在點及其右側(cè)的部分),根據(jù)圖象所示信息,解答下列問題:
(1)寫出從藥物釋放開始,與之間的函數(shù)關(guān)系式及自變量的取值范圍;
(2)據(jù)測定,只有當(dāng)空氣中每立方米的含藥量不低于毫克時,對預(yù)防才有作用,且至少持續(xù)作用分鐘以上,才能完全殺死這種病毒,請問這次消毒是否徹底?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號是( )
A.①③④ B.①②⑤ C.③④⑤ D.①③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的邊的中點,過延長線上的點作的垂線,為垂足,與的延長線相交于點,點在上,,∥.
(1)證明:;
(2)證明:點是的外接圓的圓心;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)過點(-2,-3)和點(1,6)
(1)求這個函數(shù)的解析式;
(2)當(dāng)在什么范圍內(nèi)時,函數(shù)值隨的增大而增大;
(3)求這個函數(shù)的圖像與軸的交點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為進(jìn)一步深化基教育課程改革,構(gòu)建符合素質(zhì)教育要求的學(xué)校課程體系,某學(xué)校自主開發(fā)了A書法、B閱讀,C足球,D器樂四門校本選修課程供學(xué)生選擇,每門課程被選到的機(jī)會均等.
(1)學(xué)生小紅計劃選修兩門課程,請寫出所有可能的選法;
(2)若學(xué)生小明和小剛各計劃送修一門課程,則他們兩人恰好選修同一門課程的概率為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+4x+c與x軸交于A、B兩點,交y軸交于點C,直線y=-x+5經(jīng)過點B、C.
(1)求拋物線的表達(dá)式;
(2)點D(1,0),點P為對稱軸上一動點,連接BP、CP.
①若∠CPB=90°,求點P的坐標(biāo);
②點Q為拋物線上一動點,若以C、D、P、Q為頂點的四邊形是平行四邊形,求P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在甲乙兩個不透明的口袋中,分別有大小、材質(zhì)完全相同的小球,其中甲口袋中的小球上分別標(biāo)有數(shù)字1,2,3,4,乙口袋中的小球上分別標(biāo)有數(shù)字2,3,4,先從甲袋中任意摸出一個小球,記下數(shù)字為m,再從乙袋中摸出一個小球,記下數(shù)字為n.
(1)請用列表或畫樹狀圖的方法表示出所有(m,n)可能的結(jié)果;
(2)若m,n都是方程x2﹣5x+6=0的解時,則小明獲勝;若m,n都不是方程x2﹣5x+6=0的解時,則小利獲勝,問他們兩人誰獲勝的概率大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年中國北京世界園藝博覽會(以下簡稱“世園會”)于4月29日至10月7日在北京延慶區(qū)舉行.世園會為滿足大家的游覽需求,傾情打造了4條各具特色的趣玩路線,分別是:.“解密世園會”、.“愛我家,愛園藝”、.“園藝小清新之旅”和.“快速車覽之旅”.李欣和張帆都計劃暑假去世園會,他們各自在這4條線路中任意選擇一條線路游覽,每條線路被選擇的可能性相同.
(1)李欣選擇線路.“園藝小清新之旅”的概率是多少?
(2)用畫樹狀圖或列表的方法,求李欣和張帆恰好選擇同一線路游覽的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com