如圖:在△ABC中,AB=2,BC=2,AC=4,點(diǎn)O是AC的中點(diǎn);回答下列問題:

(1)∠BAC=     °
(2)畫出將△ABC繞點(diǎn)O旋轉(zhuǎn)180°得到的△A1DC1(A→AB→D  C→C1),寫出四邊形ABCD的形狀。
(3)尺規(guī)作圖:在圖中作出△ABC的高線AE(保留作圖痕跡),并回答在四邊形ABCD的邊上(點(diǎn)A除外)是否存在點(diǎn)F,使∠EAC=∠EFC; 若存在點(diǎn)F,寫出這樣的點(diǎn)F一共有幾個(gè)?并直接寫出DF的長(zhǎng)。若不存在這樣的點(diǎn)F,請(qǐng)簡(jiǎn)要說(shuō)明理由。
(1)900;(2)平行四邊形;(3)存在一個(gè)這樣的點(diǎn),.

試題分析:(1)已知三角形三邊長(zhǎng)度,易用勾股定理的逆定理判定該三角形為直角三角形.(2)根據(jù)旋轉(zhuǎn)的性質(zhì)作圖后,由旋轉(zhuǎn)的性質(zhì)易得AB//CD、AD//BC,故四邊形ABCD是平行四邊形;(3)可以把∠EAC看做是弧BC的圓周角,則點(diǎn)E、A、C三點(diǎn)共圓,根據(jù)AE⊥BC,可知AC是圓的直徑,故以點(diǎn)O為圓心,以AC為直徑作圓,圓與四邊形ABCD的邊的交點(diǎn)即為所求點(diǎn)F,此時(shí)易得∠AFC=900;因?yàn)椤鰽DC是△ABC繞點(diǎn)O旋轉(zhuǎn)得來(lái)的,可根據(jù)三角形的面積及勾股定理求得CF、AF的長(zhǎng)度,進(jìn)而可得DF的長(zhǎng)度.
試題解析:
解:(1)∵在△ABC中,AB=2,BC=,AC=4,
;


(20如下圖所示,△A1DC1即為所求△.由旋轉(zhuǎn)可得:∠BCA=∠DAC;∠BAC=∠DCA
∴AB//CD;AD//BC
∴四邊形ABCD是平行四邊形.

如上圖所示,AE即為所求高線,有一個(gè)符合條件的點(diǎn),點(diǎn)F即為所求點(diǎn).
∵∠AEC=900,點(diǎn)O是AC的中點(diǎn)
∴點(diǎn)E、A、C三點(diǎn)共圓,且點(diǎn)O為圓心,AC為⊙O的直徑,
∴∠EAC=∠EFC;∠AFC=900
∵△ADC是△ABC繞點(diǎn)O旋轉(zhuǎn)得來(lái)的,
∴AD=BC;CD=AB


.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),AD和過(guò)C點(diǎn)的切線互相垂直,垂足為D。

(1)求證:AC平分∠DAB;
(2)連接BC,證明∠ACD=∠ABC;
(3)若AB=12cm,∠ABC=60°,求CD的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,⊙O的直徑AB=12,CD是⊙O的弦,CD⊥AB,垂足為P,且BP : AP="1" : 5.則CD的長(zhǎng)為 (   )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,PA、PB是⊙O的切線,A、B分別為切點(diǎn),PO交圓于點(diǎn)C,若∠APB=60°,PC=6,則AC的長(zhǎng)為(    )

A.4              B.           C.        D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,P為⊙O外一點(diǎn),PA、PB分別切⊙O于A、B, CD切⊙O于點(diǎn)E,分別交PA、PB于點(diǎn)C、D,若PA=5,則△PCD的周長(zhǎng)為(    )

A.5                    B.10                   C.15                  D.20

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

.如果一個(gè)扇形的弧長(zhǎng)是,半徑是6,那么此扇形的圓心角為     °

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在⊙O中,C在圓周上,∠ACB=45°,則∠AOB=    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,⊙O中,直徑MN="10" ,正方形ABCD四個(gè)頂點(diǎn)分別在半徑OM、OP以及⊙O上,并且∠POM = 45°,則 AB長(zhǎng)為         

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知⊙O的半徑為5,圓心O到直線AB的距離為2,則⊙O上有且只有_________ 個(gè)點(diǎn)到直線AB的距離為3.

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鏁愭径濠勵吅闂佹寧绻傞幉娑㈠箻缂佹ḿ鍘遍梺闈涚墕閹冲酣顢旈銏$厸閻忕偠顕ч埀顒佺箓閻g兘顢曢敃鈧敮闂佹寧妫佹慨銈夋儊鎼粹檧鏀介柣鎰▕閸ょ喎鈹戦鐐毈闁硅櫕绻冮妶锝夊礃閵娧冨箣闂備胶鎳撻顓㈠磻濞戞氨涓嶉柣妯肩帛閳锋垹绱掔€n亜鐨¢柡鈧紒妯镐簻闁靛ǹ鍎查ˉ銏☆殽閻愯尙澧﹀┑鈩冪摃椤︻噣鏌涚€n偅宕屾俊顐㈠暙閳藉鈻庤箛鏃€鐣奸梺璇叉唉椤煤閺嵮屽殨闁割偅娲栫粻鐐烘煏婵炲灝鍔存繛鎾愁煼閹綊宕堕鍕婵犮垼顫夊ú鐔奉潖缂佹ɑ濯撮柧蹇曟嚀缁椻剝绻涢幘瀵割暡妞ゃ劌锕ら悾鐑藉级鎼存挻顫嶅┑顔矫ぐ澶岀箔婢跺ň鏀介柣鎰綑閻忥箓鎳i妶鍡曠箚闁圭粯甯炴晶娑氱磼缂佹ḿ娲寸€规洖宕灒闁告繂瀚峰ḿ鏃€淇婇悙顏勨偓鏇犳崲閹烘绐楅柡宓本缍庣紓鍌欑劍钃卞┑顖涙尦閺屻倝骞侀幒鎴濆Б闂侀潧妫楅敃顏勵潖濞差亝顥堥柍鍝勫暟鑲栫紓鍌欒兌婵敻骞戦崶顒佸仒妞ゆ棁娉曢悿鈧┑鐐村灦閻燂箑鈻嶉姀銈嗏拺閻犳亽鍔屽▍鎰版煙閸戙倖瀚� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欓崝銈囩磽瀹ュ拑韬€殿喖顭烽幃銏ゅ礂鐏忔牗瀚介梺璇查叄濞佳勭珶婵犲伣锝夘敊閸撗咃紲闂佺粯鍔﹂崜娆撳礉閵堝洨纾界€广儱鎷戦煬顒傗偓娈垮枛椤兘骞冮姀銈呯閻忓繑鐗楃€氫粙姊虹拠鏌ュ弰婵炰匠鍕彾濠电姴浼i敐澶樻晩闁告挆鍜冪床闂備胶绮崝锕傚礈濞嗘垹鐭嗛柛鎰ㄦ杺娴滄粓鏌¢崶褎顥滄繛灞傚€濋幃鈥愁潨閳ь剟寮婚悢鍛婄秶濡わ絽鍟宥夋⒑缁嬫鍎愰柛鏃€鐟╁璇测槈濡攱鐎婚棅顐㈡祫缁茬偓鏅ラ梻鍌欐祰椤曟牠宕板Δ鍛仭鐟滃繐危閹版澘绠婚悗娑櫭鎾绘⒑閸涘﹦绠撻悗姘卞厴閸┾偓妞ゆ巻鍋撻柣顓炲€垮璇测槈閵忕姈鈺呮煏婢诡垰鍟伴崢浠嬫煟鎼淬埄鍟忛柛鐘崇墵閳ワ箓鏌ㄧ€b晝绠氶梺褰掓?缁€渚€鎮″☉銏$厱閻忕偛澧介悡顖滅磼閵娿倗鐭欐慨濠勭帛閹峰懘宕ㄩ棃娑氱Ш鐎殿喚鏁婚、妤呭磼濠婂懐鍘梻浣侯攰閹活亞鈧潧鐭傚顐﹀磼閻愬鍙嗛梺缁樻礀閸婂湱鈧熬鎷�