精英家教網 > 初中數學 > 題目詳情
如圖所示,AB=AD,AC=AE,BC=DE,∠B=28°,∠E=95°,∠EAB=20°,則∠BAD=
77
77
°.
分析:證△CAB≌△EAD,求出∠D=∠B=28°,在△EAD中,根據三角形內角和定理求出∠EAD,即可求出答案.
解答:解:在△CAB和△EAD中
AB=AD
AC=AE
BC=DE

∴△CAB≌△EAD(SSS),
∴∠D=∠B=28°,
∴在△EAD中,∠EAD=180°-∠AED-∠D=180°-95°-28°=57°,
∵∠EAB=20°,
∴∠BAD=∠EAB+∠EAD=20°+57°=77°,
故答案為:77.
點評:本題考查了全等三角形的性質和判定,三角形內角和定理的應用,注意:全等三角形的對應角相等,全等三角形的判定定理有SAS,ASA,AAS,SSS.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

8、如圖所示,AB=AD,∠1=∠2,添加一個適當的條件,使△ABC≌△ADE,則需要添加的條件是
AC=AE

查看答案和解析>>

科目:初中數學 來源: 題型:

7、如圖所示,AB=AD,∠ABC=∠ADC=90°,則①AC平分∠BAD;②CA平分∠BCD;③AC垂直平分BD;④BD平分∠ABC,其中正確的結論有( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•婺城區(qū)二模)如圖所示,AB=AD,∠1=∠2,添加一個適當的條件,使△ABC≌△ADE(不再添加輔助線,不再標注其他字母).
(1)你添加的條件是
AC=AE(答案不唯一)
AC=AE(答案不唯一)
;
(2)證明:

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖所示,AB=AD,AD∥BC,∠BDC=90°,∠ABC=∠DCB,則∠ADB等于
30
30
度.

查看答案和解析>>

同步練習冊答案