【題目】在平行四邊形ABCD中,AC與BD相交于0,AE⊥BD于E,CF⊥BD于F,則圖中的全等三角形共( 。
A.5對
B.6對
C.7對
D.8對
【答案】C
【解析】解:∵四邊形ABCD是平行四邊形,
∴OA=OC,OB=OD,AB=CD,AD=BC,
在△ABD和△CDB中,
,
∴△ABD≌△CDB(SSS),
同理:△ABC≌△CDA;
在△AOD和△COB中,
,
∴△AOD≌△COB(SAS),
同理:△AOB≌△COD,
∴∠ABO=∠CDO,
∵AC⊥BD,AE⊥BD,
∴∠AEO=∠CFO=90°,∠AEB=∠CFD=90°,
在△AOE和△COF中,
,
∴△AOE≌△COF(AAS),
在△ABE和△CDF中,
,
∴△ABE≌△CDF(AAS).
同理:△ADE≌△CBF.
故選C.
【考點精析】認真審題,首先需要了解平行四邊形的性質(zhì)(平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分).
科目:初中數(shù)學 來源: 題型:
【題目】一副直角三角板如圖放置,點C在FD的延長線上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,試求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩車間共120人,其中甲車間人數(shù)比乙車間人數(shù)的4倍少5人.
(1)求甲、乙兩車間各有多少人?
(2)若從甲、乙兩車間分別抽調(diào)工人,組成丙車間研制新產(chǎn)品,并使甲、乙、丙三個車間的人數(shù)比為13∶4∶7,那么甲、乙兩車間要分別抽調(diào)多少工人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在面積為60的ABCD中,過點A作AE⊥直線BC于點E,作AF⊥直線CD于點F,若AB=10,BC=12,則CE+CF的值為( )
A.22+11
B.22﹣11
C.22+11或22﹣11
D.22+11或2+
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探索規(guī)律,觀察下面算式,解答問題.
1+3 =4 =22;
1+3+5=9=32;
1+3+5+7=16=42;
1+3+5+7+9=25=52;
(1)請猜想1+3+5+7+9+…+19=
(2)請猜想1+3+5+7+9+…+(2n-1)+(2n +1)+(2n +3)=
(3)試計算:101 +103+…+197 +199.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE⊥BC于E,AF⊥CD于F,∠EAF=45°,且AE+AF=2 , 則平行四邊形ABCD的周長是( )
A.2
B.4?
C.4
D.8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一組數(shù)據(jù)1、2、4、4、3的眾數(shù)為4,則這組數(shù)據(jù)的中位數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com