【題目】某自行車廠計(jì)劃一周生產(chǎn)1400輛自行車,平均每天生產(chǎn)200輛,由于各種原因,實(shí)際每天的生產(chǎn)量與計(jì)劃量相比有出入。
下表是某周的生產(chǎn)情況(超產(chǎn)為正,減產(chǎn)為負(fù)):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減 |
(1)根據(jù)記錄可知前三天共生產(chǎn)了_________輛;
(2)產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)__________輛;
(3)該廠實(shí)行計(jì)件工資制,每輛車60元,超額完成任務(wù)每輛獎(jiǎng)15元,少生產(chǎn)一輛扣15元,那么該廠工人這一周的工資總額是多少?
【答案】(1)599 (2)26 (3)84675
【解析】
(1)根據(jù)有理數(shù)的加法,可得答案;
(2)根據(jù)最大數(shù)減最小數(shù),可得答案;
(3)根據(jù)實(shí)際生產(chǎn)的量乘以單價(jià),可得工資,根據(jù)超出的部分或不足的部分乘以每輛的獎(jiǎng)金,可得獎(jiǎng)金,根據(jù)工資加獎(jiǎng)金,可得答案.
解:(1)
(2)產(chǎn)量最多的一天是周六,共生產(chǎn)()輛,
產(chǎn)量最少的一天是周五,共生產(chǎn)輛,
故兩天相差=26(輛)
(3)5-2-4+13-10+16-9=9(輛)
(1400+9)×60+9×15=84675(元).
答:該廠工人這一周的工資總額是84675元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,AD=2AB,F是AD的中點(diǎn),作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論:(1) ∠DCF=∠BCD;(2)EF=CF;(3)S△CDF=S△CEF;(4)∠DFE=3∠AEF.其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)習(xí)過(guò)絕對(duì)值之后,我們知道:|5-2|表示 5 與 2 的差的絕對(duì)值,實(shí)際上也可理解為 5 與 2 兩數(shù)在數(shù)軸上所對(duì)應(yīng)的兩點(diǎn)之間的距離:|5+2|表示 5 與-2 的差的絕對(duì)值,實(shí)際上也可理解為 5 與-2 兩數(shù)在數(shù)軸上所對(duì)應(yīng)的兩點(diǎn)之間的距離. 試探究解決以下問(wèn)題:
⑴|x+6|可以理解為 與 兩數(shù)在數(shù)軸上所對(duì)應(yīng)的兩點(diǎn)之間的距離;
⑵找出所有符合條件的整數(shù) x,使|x+1|+|x-2|=3 成立;
⑶如圖,在一條筆直的高速公路旁邊依次有 A、B、C 三個(gè)城市,它們距高速公路起點(diǎn)的距離分別是 567km、689km、889km.現(xiàn)在需要在該公路旁建一個(gè)物流集散中心 P,請(qǐng)直接指出該物流集散中心 P 應(yīng)該建設(shè)在何處,才能使得 P 到三個(gè)城市的距離之和最小?這個(gè)最小距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】701班小強(qiáng)買了張100元的深圳通乘車卡,如果他乘車的次數(shù)用表示,則記錄他每次乘車后的余額n (元)如下表:
(1)寫出余額n與乘車的次數(shù)m的關(guān)系式.
(2)利用上述關(guān)系式計(jì)算小強(qiáng)乘了23次車還剩下多少元?
(3)小強(qiáng)最多能乘幾次車?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=8,P,Q分別是直線BC,AB上的兩個(gè)動(dòng)點(diǎn),AE=2,△AEQ沿EQ翻折形成△FEQ,連接PF,PD,則PF+PD的最小值是().
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,點(diǎn)F從菱形ABCD的頂點(diǎn)A出發(fā),沿A→D→B以1cm/s的速度勻速運(yùn)動(dòng)到點(diǎn)B.圖②是點(diǎn)F運(yùn)動(dòng)時(shí),△FBC的面積y(cm)隨時(shí)間x(s)變化的關(guān)系圖象,則a的值是__
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市舉行“傳承好家風(fēng)”征文比賽,已知每篇參賽征文成績(jī)記m分(60≤m≤100),組委會(huì)從1000篇征文中隨機(jī)抽取了部分參賽征文,統(tǒng)計(jì)了他們的成績(jī),并繪制了如下不完整的兩幅統(tǒng)計(jì)圖表.
請(qǐng)根據(jù)以上信息,解決下列問(wèn)題:
(1)征文比賽成績(jī)頻數(shù)分布表中c的值是________;
(2)補(bǔ)全征文比賽成績(jī)頻數(shù)分布直方圖;
(3)若80分以上(含80分)的征文將被評(píng)為一等獎(jiǎng),試估計(jì)全市獲得一等獎(jiǎng)?wù)魑牡钠獢?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AB為⊙O的直徑,C是BA延長(zhǎng)線上一點(diǎn),CP切⊙O于P,弦PD⊥AB于E,過(guò)點(diǎn)B作BQ⊥CP于Q,交⊙O于H.
(1)如圖1,求證:PQ=PE;
(2)如圖2,G是圓上一點(diǎn),∠GAB=30,連接AG交PD于F,連接BF,tan∠BFE=,求∠C的度數(shù);
(3)如圖3,在(2)的條件下,PD=6,連接QG交BC于點(diǎn)M,求QM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)是一門充滿樂(lè)趣的學(xué)科,某校七年級(jí)小凱同學(xué)的數(shù)學(xué)學(xué)習(xí)小組遇到一個(gè)富有挑戰(zhàn)性的探宄問(wèn)題,請(qǐng)你幫助他們完成整個(gè)探究過(guò)程;
(問(wèn)題背景)
對(duì)于一個(gè)正整數(shù)n,我們進(jìn)行如下操作:
(1)將n拆分為兩個(gè)正整數(shù)m1,m2的和,并計(jì)算乘積m1×m2;
(2)對(duì)于正整數(shù)m1,m2,分別重復(fù)此操作,得到另外兩個(gè)乘積;
(3)重復(fù)上述過(guò)程,直至不能再拆分為止,(即折分到正整數(shù)1);
(4)將所有的乘積求和,并將所得的數(shù)值稱為該正整數(shù)的“神秘值”,
請(qǐng)?zhí)骄坎煌牟鸱址绞绞欠裼绊懻麛?shù)n的“神秘值”,并說(shuō)明理由.
(嘗試探究):
(1)正整數(shù)1和2的“神秘值”分別是
(2)為了研究一般的規(guī)律,小凱所在學(xué)習(xí)小組通過(guò)討論,決定再選擇兩個(gè)具體的正整數(shù)6和7,重復(fù)上述過(guò)程
探究結(jié)論:
如圖所示,是小凱選擇的一種拆分方式,通過(guò)該拆分方法得到正整數(shù)6的“神秘值”為15.
請(qǐng)模仿小凱的計(jì)算方式,在如圖中,選擇另外一種拆分方式,給出計(jì)算正整數(shù)6的“神秘值”的過(guò)程;對(duì)于正整數(shù)7,請(qǐng)選擇一種拆分方式,在如圖中紿出計(jì)算正整數(shù)7的“神秘值”的過(guò)程.
(結(jié)論猜想)
結(jié)合上面的實(shí)踐活動(dòng),進(jìn)行更多的嘗試后,小凱所在學(xué)習(xí)小組猜測(cè),正整數(shù)n的“神秘值”與其折分方法無(wú)關(guān).請(qǐng)幫助小凱,利用嘗試成果,猜想正整數(shù)n的“神秘值”的表達(dá)式為 ,(用含字母n的代數(shù)式表示,直接寫出結(jié)果)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com