【題目】如圖,下列正多邊形都滿足BA1=CB1,在正三角形中,我們可推得:AOB1=60°;在正方形中,可推得:AOB1=90°;在正五邊形中,可推得:AOB1=108°,依此類推在正八邊形中,AOB1=____°,在正n(n≥3)邊形中,AOB1=____°

【答案】135

【解析】

根據(jù)正八邊形的性質(zhì)可以得出AB=BC,∠ABC=BCD=135°,就可以得出△ABA1≌△BCB1,就可以得出∠CBB1=BAA1,就可以得出∠AOB1=135°,由正三角形中∠AOB1=60°,正方形中,∠AOB1=90°,正五邊形中,∠AOB1=108°,n(n≥3)邊形中,∠AOB1,就可以得出結(jié)論.

如圖,多邊形ABCDEFGH是正八邊形,


AB=BC,∠ABC=BCD=135°,
在△ABA1和△BCB1中,

,
∴△ABA1≌△BCB1(SAS)
∴∠BAA1=CBB1,
∵∠AOB1=ABO+BAA1,
∴∠AOB1=ABO+CBB1=135°;

∵在正三角形中∠AOB1=60°,

正方形中,∠AOB1=90°,

正五邊形中,∠AOB1=108°,


∴在正n(n≥3)邊形中,∠AOB1,

故答案為:135°,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題提出

1)如圖(1),已知中,,,,求點(diǎn)的最短距離.

問(wèn)題探究

2)如圖(2),已知邊長(zhǎng)為3的正方形,點(diǎn)、分別在邊上,且,,連接、,若點(diǎn)分別為、上的動(dòng)點(diǎn),連接,求線段長(zhǎng)度的最小值.

問(wèn)題解決

3)如圖(3),已知在四邊形中,,,,連接,將線段沿方向平移至,點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),點(diǎn)為邊上一點(diǎn),且,連接,的長(zhǎng)度是否存在最小值?若存在,求出最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△ABC中,ABAC20,tanB,點(diǎn)DBC邊上的動(dòng)點(diǎn)(D不與點(diǎn)B,C重合).以D為頂點(diǎn)作∠ADE∠B,射線DEAC邊于點(diǎn)E,過(guò)點(diǎn)AAF⊥AD交射線DE于點(diǎn)F,連接CF

1)求證:△ABD∽△DCE

2)當(dāng)DE∥AB時(shí)(如圖2),求AE的長(zhǎng);

3)點(diǎn)DBC邊上運(yùn)動(dòng)的過(guò)程中,是否存在某個(gè)位置,使得DFCF?若存在,求出此時(shí)BD的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】星海中學(xué)為了了解本校學(xué)生喜愛的球類運(yùn)動(dòng),在本校范圍內(nèi)隨機(jī)抽查了部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,要求學(xué)生在“籃球、足球、排球、其它”四個(gè)選項(xiàng)中,選取自己最喜愛的一種球類運(yùn)動(dòng)(必選且只選一種).學(xué)校將收集的數(shù)據(jù)統(tǒng)計(jì)整理,繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題:

(1)在這次調(diào)查中,一共抽查了多少名學(xué)生?

(2)請(qǐng)通過(guò)計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;

(3)如果星海中學(xué)共有1200名學(xué)生請(qǐng)你估計(jì)該校最喜愛足球的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】疫情防控形勢(shì)下,人們?cè)谕獬鰰r(shí)都應(yīng)戴上口罩以保護(hù)自己免受新型冠狀病毒感染.某藥店用4000元購(gòu)進(jìn)若干包一次性醫(yī)用口罩,很快售完,該店又用元錢購(gòu)進(jìn)第二批這種口罩,所進(jìn)的包數(shù)比第一批多,每包口罩的進(jìn)價(jià)比第一批每包口罩的進(jìn)價(jià)多元,請(qǐng)解答下列問(wèn)題:

求購(gòu)進(jìn)的第一批醫(yī)用口罩有多少包;

政府采取措施,在這兩批醫(yī)用口罩的銷售中,售價(jià)保持了一致.若售完這兩批口罩的總利潤(rùn)不高于元錢,那么藥店銷售該口罩每包的最高售價(jià)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,ABC中,ACB=90°,AC=3,BC=4,延長(zhǎng)BC到點(diǎn)D,使BD=BA,PBC邊上一點(diǎn).點(diǎn)Q在射線BA上,PQ=BP,以點(diǎn)P為圓心,PD長(zhǎng)為半徑作P,交AC于點(diǎn)E,連接PQ,設(shè)PC=x

1AB=    ,CD=    ,當(dāng)點(diǎn)QP上時(shí),求x的值;

2x為何值時(shí),PAB相切?

3)當(dāng)PC=CD時(shí),求陰影部分的面積;

4)若PABC的三邊有兩個(gè)公共點(diǎn),直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著人們“節(jié)能環(huán)保,綠色出行”意識(shí)的增強(qiáng),越來(lái)越多的人喜歡騎自行車出行,也給自行車商家?guī)?lái)商機(jī).某自行車行經(jīng)營(yíng)的A型自行車去年銷售總額為8萬(wàn)元.今年該型自行車每輛售價(jià)預(yù)計(jì)比去年降低200元.若該型車的銷售數(shù)量與去年相同,那么今年的銷售總額將比去年減少10%,求:

(1)A型自行車去年每輛售價(jià)多少元?

(2)該車行今年計(jì)劃新進(jìn)一批A型車和新款B型車共60輛,且B型車的進(jìn)貨數(shù)量不超過(guò)A型車數(shù)量的兩倍.已知,A型車和B型車的進(jìn)貨價(jià)格分別為1500元和1800元,計(jì)劃B型車銷售價(jià)格為2400元,應(yīng)如何組織進(jìn)貨才能使這批自行車銷售獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】只有1和它本身兩個(gè)因數(shù)且大于1的正整數(shù)叫做素?cái)?shù).我國(guó)數(shù)學(xué)家陳景潤(rùn)哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果.哥德巴赫猜想是“每個(gè)大于2的偶數(shù)都表示為兩個(gè)素?cái)?shù)的和”.如20=3+17.

(1)從7、11、19、23這4個(gè)素?cái)?shù)中隨機(jī)抽取一個(gè),則抽到的數(shù)是7的概率是 ;

(2)從7、11、19、23這4個(gè)素?cái)?shù)中隨機(jī)抽取1個(gè)數(shù),再?gòu)挠嘞碌?個(gè)數(shù)中隨機(jī)抽取1個(gè)數(shù),用畫樹狀圖或列表的方法,求抽到的兩個(gè)素?cái)?shù)之和等于30的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線yax2+2ax+ca≠0)與x軸交于點(diǎn)A,B1,0)兩點(diǎn),與y軸交于點(diǎn)C,且OAOC

1)求拋物線的解析式;

2)點(diǎn)D是拋物線頂點(diǎn),求ACD的面積;

3)如圖2,射線AE交拋物線于點(diǎn)E,交y軸的負(fù)半軸于點(diǎn)F(點(diǎn)F在線段AE上),點(diǎn)P是直線AE下方拋物線上的一點(diǎn),SABE,求APE面積的最大值和此動(dòng)點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案