【題目】如圖,在平行四邊形ABCD中,OAB的中點(diǎn),連接DO并延長(zhǎng)交CB的延長(zhǎng)線于點(diǎn)E,連接AE、DB

1)求證:AOD≌△BOE

2)若DC=DE,判斷四邊形AEBD的形狀,并說明理由.

【答案】1)證明見解析;(2)四邊形AEBD是矩形.

【解析】

1)利用平行線得到∠ADO=BEO,再利用對(duì)頂角相等和線段中點(diǎn),可證明△AOD≌△BOE;

2)先證明四邊形AEBD是平行四邊形,再利用對(duì)角線相等的平行四邊形的矩形,可判定四邊形AEBD是矩形.

1)∵四邊形ABCD是平行四邊形,∴ADCE,∴∠ADO=BEO

OBC中點(diǎn),∴AO=BO

又∵∠AOD=BOE,∴△AOD≌△BOEAAS);

2)四邊形AEBD是矩形,理由如下:

∵△AOD≌△BOE,∴DO=EO

AO=BO,∴四邊形AEBD是平行四邊形.

DC=DE=AB,∴四邊形AEBD是矩形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑作圓O,分別交BC于點(diǎn)D,交CA的延長(zhǎng)線于點(diǎn)E,過點(diǎn)DDHAC于點(diǎn)H,連接DE交線段OA于點(diǎn)F.

(1)求證:DH是圓O的切線;

(2)若AEH的中點(diǎn),求的值;

(3)若EA=EF=1,求圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一道題計(jì)算:(2m4-4m3n-2m2n2-m4-2m2n2+-m4+4m3n-n3)的值,其中n=-1.”小強(qiáng)不小心把錯(cuò)抄成了,但他的計(jì)算結(jié)果卻也是正確的,你能說出這是為什么嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=BC=2,ABC=120°,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)角α(0°<α<90°)得△A1BC1,A1BAC于點(diǎn)E,A1C1分別交AC、BCD、F兩點(diǎn).

(1)如圖1,觀察并猜想,在旋轉(zhuǎn)過程中,線段BEBF有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;

(2)如圖2,當(dāng)α=30°時(shí),試判斷四邊形BC1DA的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上有AB兩點(diǎn),且AB8,點(diǎn)A表示的數(shù)為6;動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)Q從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸正方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

1)寫出數(shù)軸上點(diǎn)B表示的數(shù)是   

2)當(dāng)t2時(shí),線段PQ的長(zhǎng)是   ;

3)當(dāng)0t3時(shí),則線段AP   ;(用含t的式子表示)

4)當(dāng)PQAB時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在四邊形ABCDAD//BC ,BC=4DC=3,AD=6.動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿射線DA的方向,在射線DA上以每秒2兩個(gè)單位長(zhǎng)的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā)在線段CB上以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)PQ分別從點(diǎn)D,C同時(shí)出發(fā),當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)P隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t().

(1)設(shè)的面積為,直接寫出之間的函數(shù)關(guān)系式是____________(不寫取值范圍).

(2)當(dāng)B,P,Q三點(diǎn)為頂點(diǎn)的三角形是等腰三角形時(shí),求出此時(shí)的值.

(3)當(dāng)線段PQ與線段AB相交于點(diǎn)O,2OA=OB時(shí),直接寫出=_____________.

(4)是否存在時(shí)刻使得若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩城相距1000千米,一輛客車從甲城開往乙城,車速為千米/小時(shí),同時(shí)一輛出租車從乙城開往甲城,車速為90千米/小時(shí),設(shè)客車行駛時(shí)間為(小時(shí))

1)當(dāng)時(shí),客車與乙城的距離為 千米(用含的代數(shù)式表示)

2)已知,丙城在甲、乙兩城之間,且與甲城相距260千米

①求客車與出租車相距100千米時(shí)客車的行駛時(shí)間;(列方程解答)

②已知客車與出租車在甲、乙之間的服務(wù)站處相遇時(shí),出租車乘客小王突然接到開會(huì)通知,需要立即返回,此時(shí)小王有兩種返回乙城的方案:

方案一:繼續(xù)乘坐出租車到丙城,加油后立刻返回乙城,出租車加油時(shí)間忽略不計(jì);

方案二:在處換成客車返回乙城.

是通過計(jì)算,分析小王選擇哪種方案能更快到達(dá)乙城?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在解決數(shù)學(xué)問題的過程中,我們常用到分類討論的數(shù)學(xué)思想,下面是運(yùn)用分類討論的數(shù)學(xué)思想解決問題的過程,請(qǐng)仔細(xì)閱讀,并解答題目后提出的探究問題.

(提出問題)三個(gè)有理數(shù)a,b,c,滿足abc>0,求的值.

(解決問題)

解:由題意得:a,bc三個(gè)有理數(shù)都為正數(shù)或其中一個(gè)為正數(shù),另兩個(gè)為負(fù)數(shù).

①當(dāng)a,b,c,都是整數(shù),即a>0,b>0,c>0時(shí),則= =1+1+1=3

②當(dāng)a,b,c有一個(gè)為正數(shù),另兩個(gè)位負(fù)數(shù)時(shí),設(shè)a>0,b<0c<0,則= =111=1;

所以的值為31.

(探究)請(qǐng)根據(jù)上面的解題思路解答下面的問題:

(1)三個(gè)有理數(shù)ab,c滿足abc<0,求的值;

(2)已知=9,=4,且a<b,求a2b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平分平分,則__________

查看答案和解析>>

同步練習(xí)冊(cè)答案