【題目】如圖,∠A=B=90°,EAB上的一點(diǎn),且AE=BC,∠1=2.求證:(1ADEBEC 2CDE 是直角三角形

【答案】(1)證明見(jiàn)解析; (2)證明見(jiàn)解析.

【解析】

(1)根據(jù)∠1=2,得DE=CE,利用“HL”可證明RtADERtBEC;
(2)是直角三角形,由RtADERtBEC得,∠3=4,從而得出∠4+5=90°,則CDE是直角三角形.

(1)∵∠1=∠2,

∴DE=CE,

∵∠A=∠B=90°,

Rt△ADERt△BEC中,

∴Rt△ADE≌Rt△BEC(HL);

(2)∵Rt△ADE≌Rt△BEC,

∴∠3=∠4,

∵∠3+∠5=90°,

∴∠4+∠5=90°,

∴∠DEC=90°,

∴△CDE是直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)ABCD,EF相交于點(diǎn)O,則∠AOD的對(duì)頂角是_________,∠AOC的鄰補(bǔ)角是_______.若∠AOC50°,則∠BOD__________,∠COB______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),四邊形ABCO是菱形,點(diǎn)A的坐標(biāo)為(﹣3,4),點(diǎn)C軸的正半軸上,直線(xiàn)AC軸于點(diǎn)MAB邊交y軸于點(diǎn)H,連接BM.

(1)菱形ABCO的邊長(zhǎng)是_________

(2)求直線(xiàn)AC的解析式;

(3)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿折線(xiàn)ABC的方向以2個(gè)單位/秒的速度向終點(diǎn)C勻速運(yùn)動(dòng),設(shè)△PMB的面積為S,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,求St之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在菱形ABCD中,∠ABC與∠BAD的度數(shù)比為1:2,周長(zhǎng)是48cm.求:

(1)兩條對(duì)角線(xiàn)的長(zhǎng)度;(2)菱形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為獎(jiǎng)勵(lì)優(yōu)秀學(xué)生,某校準(zhǔn)備購(gòu)買(mǎi)一批文具袋和圓規(guī)作為獎(jiǎng)品,已知購(gòu)買(mǎi)1個(gè)文具袋和2個(gè)圓規(guī)需21元,購(gòu)買(mǎi)2個(gè)文具袋和3個(gè)圓規(guī)需39元。

1)求文具袋和圓規(guī)的單價(jià)。

2)學(xué)校準(zhǔn)備購(gòu)買(mǎi)文具袋20個(gè),圓規(guī)若干,文具店給出兩種優(yōu)惠方案:

方案一:購(gòu)買(mǎi)一個(gè)文具袋還送1個(gè)圓規(guī)。

方案二:購(gòu)買(mǎi)圓規(guī)10個(gè)以上時(shí),超出10個(gè)的部分按原價(jià)的八折優(yōu)惠,文具袋不打折.

①設(shè)購(gòu)買(mǎi)面規(guī)m個(gè),則選擇方案一的總費(fèi)用為______,選擇方案二的總費(fèi)用為______.

②若學(xué)校購(gòu)買(mǎi)圓規(guī)100個(gè),則選擇哪種方案更合算?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下列推理證明.

已知:如圖,ADEF,∠1=∠2.

求證:ABDG.

證明:∵ADEF(________)

∴∠1=∠(_____)(________________

∵∠1=∠2(已知),

∴∠________=∠2(________________________)

ABDG(______________________________________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了迎接2018年高中招生考試,某中學(xué)對(duì)全校九年級(jí)進(jìn)行了一次數(shù)學(xué)摸底考試,并隨機(jī)抽取了部分學(xué)生的測(cè)試成績(jī)作為樣本進(jìn)行分析,繪制成如下兩幅不完整的統(tǒng)計(jì)圖1和圖2,請(qǐng)你根據(jù)圖中所給的信息解答下列問(wèn)題。

(1)請(qǐng)將表示成績(jī)類(lèi)別為“中”的條形統(tǒng)計(jì)圖補(bǔ)充完整;

(2)在扇形統(tǒng)計(jì)圖中表示成績(jī)?yōu)椤皟?yōu)”的扇形所對(duì)的圓心角為 度;

(3)學(xué)校九年級(jí)共有600人參加這次數(shù)學(xué)考試,估計(jì)該校有多少名學(xué)生成績(jī)可以達(dá)到優(yōu).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】填寫(xiě)下列證明過(guò)程中的推理根據(jù):

已知:如圖所示,AC,BD相交于O,DF平分∠CDOAC相交于F,BE平分于∠ABOAC相交于E,∠A=∠C.求證:∠1∠2.

證明:∵∠A∠C(________)

ABCD (__________________________________),

∴∠ABO∠CDO (__________________________________)

∵∠1CDO,∠2∠ABO (__________________________________),

∴∠1∠2(____________________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著移動(dòng)計(jì)算技術(shù)和無(wú)線(xiàn)網(wǎng)絡(luò)的快速發(fā)展,移動(dòng)學(xué)習(xí)方式越來(lái)越引起人們的關(guān)注,某校計(jì)劃將這種學(xué)習(xí)方式應(yīng)用到教育學(xué)中,從全校1500名學(xué)生中隨機(jī)抽取了部分學(xué)生,對(duì)其家庭中擁有的移動(dòng)設(shè)備的情況進(jìn)行調(diào)查,并繪制出如下的統(tǒng)計(jì)圖①和圖②,根據(jù)相關(guān)信息,解答下列問(wèn)題:

(1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為   ,圖①中m的值為   ;

(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);

(3)根據(jù)樣本數(shù)據(jù),估計(jì)該校1500名學(xué)生家庭中擁有3臺(tái)移動(dòng)設(shè)備的學(xué)生人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案