【題目】如圖,PA、PB分別切圓OA、B兩點,C為劣弧AB上一點,∠APB=40°,則∠ACB= ).

A.70°B.80°C.110°D.140°

【答案】C

【解析】

如圖,連接AOOB,PA、PB分別切圓OA、B兩點,可以知道∠PAO=PBO=90°,由此可以求出∠AOB的度數(shù);設(shè)點E是優(yōu)弧AB上一點,由圓周角定理知,∠E=70°,由圓內(nèi)接四邊形的對角互補即可求出∠ACB的度數(shù).

如圖,連接AO,OB,


PA、PB分別切圓OA、B兩點,
∴∠PAO=PBO=90°,
∴∠AOB=180°-APB=140°
設(shè)點E是優(yōu)弧AB上一點,
由圓周角定理知,∠E=70°,
由圓內(nèi)接四邊形的對角互補知,
ACB=180°-E=110°
故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三位運動員在相同條件下各射靶10次,每次射靶的成績?nèi)缦拢?/span>

甲:9,10,8,5,7,8,10,8,8,7;

乙:5,7,8,7,8,9,7,9,10,10;

丙:7,6,8,5,4,7,6,3,9,5.

(1)根據(jù)以上數(shù)據(jù)完成下表:

平均數(shù)

中位數(shù)

方差

8

8

8

8

2.2

6

3

(2)依據(jù)表中數(shù)據(jù)分析,哪位運動員的成績最穩(wěn)定,并簡要說明理由;

(3)比賽時三人依次出場,順序由抽簽方式?jīng)Q定.求甲、乙相鄰出場的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y1=2x2與坐標(biāo)軸交于A、B兩點,與雙曲線y2=x0)交于點C,過點CCDx軸,且OA=AD,則以下結(jié)論錯誤的是

A. 當(dāng)x0時,y1x的增大而增大,y2x的增大而減;

B. k=4

C. 當(dāng)0x2時,y1y2

D. 當(dāng)x=4時,EF=4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtABC的邊ABx,垂足為A,C的坐標(biāo)為(1,0),反比例函數(shù)y= (x>0)的圖象經(jīng)過BC的中點D,AB于點E.已知AB=4,BC=5.k的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖以△ABC的一邊AB為直徑作⊙O,OBC邊的交點D恰好為BC的中點,過點D作⊙O的切線交AC邊于點F.

1)求證:DFAC

2)若∠ABC=30°,求tanBCO的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將正方形繞點逆時針旋轉(zhuǎn)后得到正方形,依此方式,繞點連續(xù)旋轉(zhuǎn)2019次得到正方形,如果點的坐標(biāo)為(1,0),那么點的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,是等邊三角形,AP、BP的延長線分別交邊CD于點EF,聯(lián)結(jié)ACCP、ACBF相交于點H,下列結(jié)論中錯誤的是(

A.AE=2DEB.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,、的大小關(guān)系是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A在函數(shù)圖像上,過點Ax軸和y軸的平行線分別交函數(shù)圖像于點B、C,直線BC與坐標(biāo)軸的交點為D、E.當(dāng)點A在函數(shù)圖像上運動時,

1)設(shè)點A橫坐標(biāo)為a,則點B的坐標(biāo)為 ,點C的坐標(biāo)為 (用含a的字母表示);

2ABC的面積是否發(fā)生變化?若不變,求出ABC的面積,若變化,請說明理由;

查看答案和解析>>

同步練習(xí)冊答案