精英家教網 > 初中數學 > 題目詳情

【題目】已知:A=,B=

(1)求3A+6B;

(2)若3A+6B的值與a的取值無關,求b的值.

【答案】(1);(2)

【解析】

1)根據A=2a2+3ab-2a-1B=-a2+ab-1求出3A6B,再進行相加即可求出答案;

2)根據(1)求出的答案,先把a提出來,再根據3A+6B的值與a的取值無關,即可求出b的值.

解:(1∵A=2a2+3ab-2a-1B=-a2+ab-1

∴3A+6B=32a2+3ab-2a-1+6-a2+ab-1),

=6a2+9ab-6a-3-6a2+6ab-6,

=15ab-6a-9

2∵3A+6B=15ab-6a-9=a15b-6-9,3A+6B的值與a的取值無關,

∴15b-6=0,

∴b=;

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知拋物線y=kx2+(k﹣2)x﹣2(其中k0).

(1)求該拋物線與x軸的交點及頂點的坐標(可以用含k的代數式表示);

(2)若記該拋物線頂點的坐標為P(m,n),直接寫出|n|的最小值;

3)將該拋物線先向右平移個單位長度,再向上平移個單位長度,隨著k的變化,平移后的拋物線的頂點都在某個新函數的圖象上,求新函數的解析式(不要求寫自變量的取值范圍).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線yax2+bx3A1,0),B(﹣30),直線AD交拋物線于點D,點D的橫坐標為﹣2,點Pm,n)是線段AD上的動點.

1)求直線AD及拋物線的解析式;

2)過點P的直線垂直于x軸,交拋物線于點Q,求線段PQ的長度lm的關系式,m為何值時,PQ最長?

3)在平面內是否存在整點(橫、縱坐標都為整數)R,使得P,Q,D,R為頂點的四邊形是平行四邊形?若存在,直接寫出點R的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AD、CF分別是∠BAC、∠ACB的角平分線,且AD、CF交于點I,IE⊥BC與E,下列結論:①∠BIE=∠CID;②S△ABCIE(AB+BC+AC);③BE=(AB+BC-AC);④AC=AF+DC.其中正確的結論是( )

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校為了組織一次球類對抗賽,在本校隨機抽取了若干名學生,對他們每個人最喜歡的一項球類運動進行了統計,將調查結果整理后繪制成如圖所示的不完整的統計圖,請你依據以上的信息回答下列問題:

1)求本次被調查的學生人數;

2)通過計算補全條形統計圖;

3)若全校有4000名學生,請你估計該校最喜歡籃球和足球運動的學生共有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(﹣1,5),B(﹣1,0),C(﹣43

1)在圖中作出△ABC關于y軸的對稱圖形△A1B1C1;

2)求出△A1B1C1的面積;

3)將△ABC向左平移2個單位,再向上平移2個單位得△A2B2C2,請直接寫出點A2,B2,C2的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,P是對角線AC上的一點,點E在BC的延長線上,且PE=PB.

(1)求證:BCP≌△DCP;

(2)求證:DPE=ABC;

(3)把正方形ABCD改為菱形,其它條件不變(如圖),若ABC=58°,則DPE=   度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,二次函數 y=ax2+bx+c 的圖象與 x 軸的交點的橫坐標分別為-1,3,則:

①ac<0;②2a+b=0;③4a+2b+c>0;④對于任意 x 均有 ax2+bx≥a+b,其中結論正確的個數有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC,BD相交于點O,∠ABC=60°,過點B作AC的平行線交DC的延長線于點E.

(1) 求證:四邊形ABEC為菱形;

(2) 若AB=6,連接OE,求OE的值.

查看答案和解析>>

同步練習冊答案