【題目】如圖,點(diǎn)的坐標(biāo)為,過(guò)點(diǎn)作不軸的垂線(xiàn)交直于點(diǎn)以原點(diǎn)為圓心,的長(zhǎng)為半徑斷弧交軸正半軸于點(diǎn);再過(guò)點(diǎn)作軸的垂線(xiàn)交直線(xiàn)于點(diǎn),以原點(diǎn)為圓心,以的長(zhǎng)為半徑畫(huà)弧交軸正半軸于點(diǎn);…按此作法進(jìn)行下去,則的長(zhǎng)是____________.
【答案】
【解析】先根據(jù)一次函數(shù)方程式求出B1點(diǎn)的坐標(biāo),再根據(jù)B1點(diǎn)的坐標(biāo)求出A2點(diǎn)的坐標(biāo),得出B2的坐標(biāo),以此類(lèi)推總結(jié)規(guī)律便可求出點(diǎn)A2019的坐標(biāo),再根據(jù)弧長(zhǎng)公式計(jì)算即可求解,.
直線(xiàn)y=x,點(diǎn)A1坐標(biāo)為(2,0),過(guò)點(diǎn)A1作x軸的垂線(xiàn)交 直線(xiàn)于點(diǎn)B1可知B1點(diǎn)的坐標(biāo)為(2,2),
以原O為圓心,OB1長(zhǎng)為半徑畫(huà)弧x軸于點(diǎn)A2,OA2=OB1,
OA2=,點(diǎn)A2的坐標(biāo)為(4,0),
這種方法可求得B2的坐標(biāo)為(4,4),故點(diǎn)A3的坐標(biāo)為(8,0),B3(8,8)
以此類(lèi)推便可求出點(diǎn)A2019的坐標(biāo)為(22019,0),
則的長(zhǎng)是.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】墊球是排球運(yùn)動(dòng)的一項(xiàng)重要技術(shù).下列圖表中的數(shù)據(jù)分別是甲、乙、內(nèi)三個(gè)運(yùn)動(dòng)員十次墊球測(cè)試的成績(jī),規(guī)則為每次測(cè)試連續(xù)墊球10個(gè),每墊球到位1個(gè)記1分.
測(cè)試序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成績(jī)(分) | 7 | 6 | 8 | 7 | 7 | 5 | 8 | 7 | 8 | 7 |
(1)寫(xiě)出運(yùn)動(dòng)員甲測(cè)試成績(jī)的眾數(shù)和中位數(shù);
(2)試從平均數(shù)和方差兩個(gè)角度綜合分析,若在他們?nèi)酥羞x擇一位墊球成績(jī)優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認(rèn)為選誰(shuí)更合適?(參考數(shù)據(jù):三人成績(jī)的方差分別為S甲2=0.8、S乙2=0.4、s丙2=0.81)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù)為,點(diǎn)對(duì)應(yīng)的數(shù)為,為原點(diǎn),且、滿(mǎn)足:.試解答下列問(wèn)題:
(1)求數(shù)軸上線(xiàn)段的長(zhǎng)度;
(2)若點(diǎn)以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右運(yùn)動(dòng),則經(jīng)過(guò)秒后點(diǎn)表示的數(shù)為 ;(用含的代數(shù)式表示)
(3)若點(diǎn),都以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右運(yùn)動(dòng),而點(diǎn)不動(dòng),經(jīng)過(guò)秒后其中一個(gè)點(diǎn)是一條線(xiàn)段的中點(diǎn),求此時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平行四邊形ABCD中,O為對(duì)角線(xiàn)BD的中點(diǎn),過(guò)點(diǎn)O的直線(xiàn)EF分別交AD,BC于E,F兩點(diǎn),連結(jié)BE,DF.
(1)求證:△DOE≌△BOF.
(2)當(dāng)∠DOE等于多少度時(shí),四邊形BFDE為菱形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù) (為常數(shù)),當(dāng)自變量的值滿(mǎn)足時(shí),與其對(duì)應(yīng)的函數(shù)值的最大值為-1,則的值為( )
A. 3或6 B. 1或6 C. 1或3 D. 4或6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新規(guī)定:點(diǎn)為線(xiàn)段上一點(diǎn),當(dāng)或時(shí),我們就規(guī)定為線(xiàn)段的“三倍距點(diǎn)”。如圖,在數(shù)軸上,點(diǎn)所表示的數(shù)為-3,點(diǎn)所表示的數(shù)為5.
(1)確定點(diǎn)所表示的數(shù)為___________.
(2)若動(dòng)點(diǎn)從點(diǎn)出發(fā),沿射線(xiàn)方向以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒.
①當(dāng)點(diǎn)與點(diǎn)重合時(shí),求的值.
②求的長(zhǎng)度(用含的代數(shù)式表示).
③當(dāng)點(diǎn)為線(xiàn)段的“三倍距點(diǎn)”時(shí),直接寫(xiě)出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形,點(diǎn)是線(xiàn)段延長(zhǎng)線(xiàn)上一點(diǎn),聯(lián)結(jié),其中.若將繞著點(diǎn)逆時(shí)針旋轉(zhuǎn)使得與第一次重合時(shí),點(diǎn)落在點(diǎn)(圖中未畫(huà)出).求:在此過(guò)程中,
(1)旋轉(zhuǎn)的角度等于 ______________.
(2)線(xiàn)段掃過(guò)的平面部分的面積為__________(結(jié)果保留)
(3)聯(lián)結(jié),則的面積為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某九年一貫制學(xué)校在六年級(jí)和九年級(jí)的男生中分別隨機(jī)抽取40名學(xué)生測(cè)量他們的身高,將數(shù)據(jù)分組整理后,繪制的頻數(shù)分布直方圖如下:其中兩條縱向虛線(xiàn)上端的數(shù)值分別是每個(gè)年級(jí)抽出的40名男生身高的平均數(shù),根據(jù)統(tǒng)計(jì)圖提供的信息,下列結(jié)論不合理的是( )
A. 六年級(jí)40名男生身高的中位數(shù)在第153~158cm組
B. 可以估計(jì)該校九年級(jí)男生的平均身高比六年級(jí)的平均身高高出18.6cm
C. 九年級(jí)40名男生身高的中位數(shù)在第168~173cm組
D. 可以估計(jì)該校九年級(jí)身高不低于158cm但低于163cm的男生所占的比例大約是5%
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形ABCD中,P是對(duì)角線(xiàn)BD上的點(diǎn),點(diǎn)E在AB上,且PA=PE.
(1)求證:PC=PE;
(2)求∠CPE的度數(shù);
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,試探究∠CPE與∠ABC之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com