【題目】已知,在△ABC中,∠BAC=90°,∠ABC=45°,點D為直線BC上一動點(點D不與點B,C重合).以AD為邊作正方形ADEF,連接CF.
(1)如圖1,當點D在線段BC上時.求證:CF+CD=BC;
(2)如圖2,當點D在線段BC的延長線上時,其他條件不變,請直接寫出CF,BC,CD三條線段之間的關系;
(3)如圖3,當點D在線段BC的反向延長線上時,且點A,F(xiàn)分別在直線BC的兩側,其他條件不變;
①請直接寫出CF,BC,CD三條線段之間的關系;
②若正方形ADEF的邊長為2,對角線AE,DF相交于點O,連接OC.求OC的長度.
【答案】(1)證明見解析;(2)CF-CD=BC;(3)①CD-CF=BC;②2.
【解析】試題分析:(1)、根據(jù)正方形的性質判定出△BAD和△CAF全等,從而得出BD=CF,根據(jù)BD+CD=BC得出答案;(2)、根據(jù)圖形得出線段之間的關系;(3)、首先根據(jù)正方形的性質證明△BAD和△CAF全等,然后得出∠ACF=∠ABD=135°,從而說明△FCD為直角三角形,根據(jù)正方形的對角線得出DF的長度,然后根據(jù)直角三角形斜邊上的中線的性質得出OC的長度.
試題解析:(1)、∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,
∵四邊形ADEF是正方形,∴AD=AF,∠DAF=90°,
∵∠BAD=90°-∠DAC,∠CAF=90°-∠DAC,∴∠BAD=∠CAF,
則在△BAD和△CAF中,∴△BAD ≌ △CAF(SAS),∴BD=CF,
∵BD+CD=BC,∴CF+CD=BC;
(2)、CF-CD=BC
(3)、①CD-CF =BC.
②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC, ∵四邊形ADEF是正方形,
∴AD=AF,∠DAF=90°, ∵∠BAD=90°-∠BAF,∠CAF=90°-∠BAF,∴∠BAD=∠CAF,
則在△BAD和△CAF中,∴△BAD ≌ △CAF(SAS),
∴∠ABD=∠ACF,∵∠ABC=45°,∠ABD=135°, ∴∠ACF=∠ABD=135°,
∴∠FCD=90°,∴△FCD是直角三角形. ∵正方形ADEF的邊長為且對角線AE、DF相交于點O,
∴DF=AD=4,O為DF中點. ∴OC=DF=2.
科目:初中數(shù)學 來源: 題型:
【題目】一項工程,甲、乙兩公司合做,12天可以完成,共需付工費102000元;如果甲、乙兩公司單獨完成此項公程,乙公司所用時間是甲公司的1.5倍,乙公司每天的施工費比甲公司每天的施工費少1500元。
(1)甲、乙公司單獨完成此項工程,各需多少天?
(2)若讓一個公司單獨完成這項工程,哪個公司施工費較少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題14分)如圖①,已知拋物線(a≠0)與軸交于點A(1,0)和點B(-3,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)設拋物線的對稱軸與軸交于點M,問在對稱軸上是否存在點P,使△CMP為等腰三角形?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.
(3)如圖②,若點E為第二象限拋物線上一動點,連接BE、CE,求四邊形BOCE面積的最大值,并求此時E點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】式子-4-2-1+2的正確讀法是( )
A. 減4減2減1加2B. 負4減2減1加2
C. -4,-2,-1加2D. 4,2,1,2的和
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在學校組織的社會實踐活動中,甲、乙兩人參加了射擊比賽,每人射擊七次,命中的環(huán)數(shù)如表:
根據(jù)以上信息,解決以下問題:
(1)寫出甲、乙兩人命中環(huán)數(shù)的眾數(shù);
(2)已知通過計算器求得=8,≈1.43,試比較甲、乙兩人誰的成績更穩(wěn)定?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com