【題目】在△ABC中,AB=AC,∠BAC=50° ,D是BC的中點,以AC為腰向外作等腰直角△ACE,∠EAC=90°,連接BE,交AD于點F,交AC于點G.
(1)求∠AEB的度數(shù);
(2)求證:∠AEB=∠ACF;
(3)若AB=4,求的值.
【答案】(1)20°;(2)32.
【解析】
(1)根據(jù)等腰直角三角形的旋轉(zhuǎn)得出∠ABE=∠AEB,求出∠BAE,根據(jù)三角形內(nèi)角和定理求出即可;
(2)根據(jù)等腰三角形的性質(zhì)得出∠BAF=∠CAF,根據(jù)SAS推出△BAF≌△CAF,根據(jù)全等得出∠ABF=∠ACF,即可得出答案;
(3)根據(jù)全等得出BF=CF,求出∠CFG=∠EAG=90°,根據(jù)勾股定理求出EF2+BF2=EF2+CF2=EC2,EC2=AC2+AE2,即可得出答案.
(1)∵AB=AC,AC=AE.
∴AB=AE,
∴∠AEB=∠ABE.
∵∠BAC=50°,∠CAE=90°,
∴∠BAE=50°+90°=140°.
∴∠AEB=.
(2)∵AB=AC,D是BC的中點,
∴∠BAF=∠CAF.
∴△ABF≌△ACF.
∴∠ABF=∠ACF.
∵∠AEB=∠ABE,
∴∠AEB=∠ACF.
(3)∵∠AEB=∠ACF ,∠AGE=∠CGF,
∴∠CFE=∠CAE=90°.
∴.
∵CF=BF,
∴.
∵,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中學(xué)生帶手機上學(xué)的現(xiàn)象越來越受到社會的關(guān)注,為此,某記者隨機調(diào)查了某城區(qū)若干名學(xué)生家長對這種現(xiàn)象的態(tài)度(態(tài)度分為:A:無所謂;B:基本贊成;C:贊成;D:反對),并將調(diào)查結(jié)果繪制成頻數(shù)折線圖1和統(tǒng)計圖2(不完整)。請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣檢查中,共調(diào)查了 名學(xué)生家長;
(2)將圖1補充完整;
(3)根據(jù)抽樣檢查的結(jié)果,請你估計該市城區(qū)6000名中學(xué)生家長中有多少名家長持反對態(tài)度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,△ABC是等邊三角形,P是三角形內(nèi)一點,PD∥AB,PE∥BC,PF∥AC,若△ABC的周長為18,則PD+PE+PF=( 。
A. 18B. 9
C. 6D. 條件不夠,不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,點A的坐標為(﹣1,0),且OC=OB,tan∠ACO= .
(1)求拋物線的解析式;
(2)若點D和點C關(guān)于拋物線的對稱軸對稱,直線AD下方的拋物線上有一點P,過點P作PH⊥AD于點H,作PM平行于y軸交直線AD于點M,交x軸于點E,求△PHM的周長的最大值;
(3)在(2)的條件下,以點E為端點,在直線EP的右側(cè)作一條射線與拋物線交于點N,使得∠NEP為銳角,在線段EB上是否存在點G,使得以E,N,G為頂點的三角形與△AOC相似?如果存在,請求出點G的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是∠ABC的平分線,ED∥BC,∠4=∠5,則EF也是∠AED的平分線.完成下列推理過程:
證明:∵BD是∠ABC的平分線(已知)
∴∠1=∠2(角平分線定義)
∵ED∥BC(已知)
∴∠5=∠2( )
∴∠1=∠5(等量代換)
∵∠4=∠5(已知)
∴EF∥ ( )
∴∠3=∠1( )
∴∠3=∠4(等量代換)
∴EF是∠AED的平分線(角平分線定義)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以x為自變量的二次函數(shù)y=x2﹣2(b﹣2)x+b2﹣1的圖象不經(jīng)過第三象限,則實數(shù)b的取值范圍是( )
A.b≥
B.b≥1或b≤﹣1
C.b≥2
D.1≤b≤2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BC為半圓的直徑,O為圓心,D是弧AC的中點,四邊形ABCD的對角線AC,BD交于點E,BC= ,CD= ,則sin∠AEB的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于實數(shù)a,我們規(guī)定:用符號表示不大于的最大整數(shù),稱為a的根整數(shù),例如:,=3.
(1)仿照以上方法計算:=______;=_____.
(2)若,寫出滿足題意的x的整數(shù)值______.
如果我們對a連續(xù)求根整數(shù),直到結(jié)果為1為止.例如:對10連續(xù)求根整數(shù)2次 =1,這時候結(jié)果為1.
(3)對100連續(xù)求根整數(shù),____次之后結(jié)果為1.
(4)只需進行3次連續(xù)求根整數(shù)運算后結(jié)果為1的所有正整數(shù)中,最大的是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=1,BC=2,BC在x軸上,一次函數(shù)y=kx﹣2的圖象經(jīng)過點A、C,并與y軸交于點E,反比例函數(shù)y= 的圖象經(jīng)過點A.
(1)點E的坐標是;
(2)求反比例函數(shù)的解析式;
(3)求當(dāng)一次函數(shù)的值小于反比例函數(shù)的值時,x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com