(2005•宜賓)如圖,已知在梯形ABCD中,AD∥BC,AB=DC,且AC⊥BD,AC=6,則該梯形的高DE等于    .(結(jié)果不取近似值).
【答案】分析:過D作DF∥AC,交BC的延長(zhǎng)線于F,由題意易得,△BDF是等腰直角三角形,從而可求得DF=AC,再根據(jù)勾股定理即可求得DE的長(zhǎng).
解答:解:過D作DF∥AC,交BC的延長(zhǎng)線于F,由題意易得,
∵AB=DC,
∴AC=BD,
∴BD=DF,
∵AC⊥BD,DF∥AC,
∴BD⊥DF,
∴△BDF是等腰直角三角形,DF=AC=6,DE⊥BC,根據(jù)勾股定理可得DE等于3
點(diǎn)評(píng):此題考查等腰梯形的性質(zhì)及梯形中常見的輔助線的作法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2005•宜賓)如圖,已知拋物線的頂點(diǎn)為M(2,-4),且過點(diǎn)A(-1,5),連接AM交x軸于點(diǎn)B.
(1)求這條拋物線的解析式;
(2)求點(diǎn)B的坐標(biāo);
(3)設(shè)點(diǎn)P(x,y)是拋物線在x軸下方、頂點(diǎn)左方一段上的動(dòng)點(diǎn),連接PO,以P為頂點(diǎn)、PO為腰的等腰三角形的另一頂點(diǎn)Q在x軸的垂線交直線AM于點(diǎn)R,連接PR,設(shè)△PQR的面積為S,求S與x之間的函數(shù)關(guān)系式;
(4)在上述動(dòng)點(diǎn)P(x,y)中,是否存在使S△PQR=2的點(diǎn)?若存在,求點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(04)(解析版) 題型:填空題

(2005•宜賓)如圖,反比例函數(shù)的圖象與一次函數(shù)y=-x+1的圖象在第二象限內(nèi)的交點(diǎn)坐標(biāo)(-1,n),則k的值是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市青春中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2005•宜賓)如圖,已知拋物線的頂點(diǎn)為M(2,-4),且過點(diǎn)A(-1,5),連接AM交x軸于點(diǎn)B.
(1)求這條拋物線的解析式;
(2)求點(diǎn)B的坐標(biāo);
(3)設(shè)點(diǎn)P(x,y)是拋物線在x軸下方、頂點(diǎn)左方一段上的動(dòng)點(diǎn),連接PO,以P為頂點(diǎn)、PO為腰的等腰三角形的另一頂點(diǎn)Q在x軸的垂線交直線AM于點(diǎn)R,連接PR,設(shè)△PQR的面積為S,求S與x之間的函數(shù)關(guān)系式;
(4)在上述動(dòng)點(diǎn)P(x,y)中,是否存在使S△PQR=2的點(diǎn)?若存在,求點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年四川省宜賓市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•宜賓)如圖,已知拋物線的頂點(diǎn)為M(2,-4),且過點(diǎn)A(-1,5),連接AM交x軸于點(diǎn)B.
(1)求這條拋物線的解析式;
(2)求點(diǎn)B的坐標(biāo);
(3)設(shè)點(diǎn)P(x,y)是拋物線在x軸下方、頂點(diǎn)左方一段上的動(dòng)點(diǎn),連接PO,以P為頂點(diǎn)、PO為腰的等腰三角形的另一頂點(diǎn)Q在x軸的垂線交直線AM于點(diǎn)R,連接PR,設(shè)△PQR的面積為S,求S與x之間的函數(shù)關(guān)系式;
(4)在上述動(dòng)點(diǎn)P(x,y)中,是否存在使S△PQR=2的點(diǎn)?若存在,求點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年四川省宜賓市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2005•宜賓)如圖,反比例函數(shù)的圖象與一次函數(shù)y=-x+1的圖象在第二象限內(nèi)的交點(diǎn)坐標(biāo)(-1,n),則k的值是   

查看答案和解析>>

同步練習(xí)冊(cè)答案